Artificial Neural Network Based Rainfall Prediction using Back Propagation Technique in Pekanbaru City

  • Nurmala Faculty of Mathematics, Natural Sciences and Health, Universitas Muhammadiyah Riau, Indonesia
  • Yulia Fitri Universitas Muhammadiyah Riau
  • Sanya Gautami BMKG Sultan Syarif Kasim II, Riau, Indonesia
Keywords: Rainfall, Prediction, Artificial Neural Network

Abstract

The intensity of rainfall is a significant weather component that has a profound effect on natural disasters, particularly floods and landslides, particularly in Indonesia. Precise meteorological forecasts and comprehensive climatic data, including accurate rainfall projections, will effectively reduce the hazards associated with severe weather events. Prior studies have demonstrated the efficacy of the Backpropagation Neural Network (NN) approach in accurately forecasting rainfall. The objective of this work is to forecast the daily precipitation in Pekanbaru City using Neural Networks with the Backpropagation technique. The neural network model was constructed using supervised multilayer learning, initially with one hidden layer and subsequently expanded to two hidden layers, utilizing daily data spanning three years (2017-2019). The rainfall forecasting model was constructed by many iterative training and testing procedures. Forecasts of rainfall were categorized into six groups: cloudy, light rain, moderate rain, heavy rain, very heavy rain, and extreme rain. The forecast outcomes were shown using a MATLAB graphical user interface (GUI). While the prediction accuracy of 61% falls short of the national verification threshold of 75%, this work establishes a fundamental framework for the application of neural networks in weather forecasting. The outcomes can be enhanced by using more relevant data and using more precise training procedures to achieve more precise predictions.

Downloads

Download data is not yet available.

References

Andriani, M., Indrabayu., dan Aren., S. A. 2015. Prediksi Pemakaian Obat di Instalasi Farmasi Rumah Sakit Pendidikan Dengan Menggunakan Metode Jaringan Syaraf Tiruan. Dielektrika. Vol. 2. No. 1.
Anwar, Badrul. 2011. Penerapan Algoritma Jaringan Saraf Tiruan Backpropagation dalam Memprediksi Tingkat Suku Bunga. Medan. STEMIK Triguna Dharma. Saintikom. Vol. 10. No. 2.
Fauset, Laurene. 1994. Fundamentals of Neural Networks : Architectures, algorithms, and applications. United States. Prentice-Hall, Inc.
Handoko. 1994. Pengantar Unsur Unsur Cuaca Di Stasiun Klimatologi Pertanian. Bogor. IPB.
Handayani, L dan Adri, M. 2015 Penerapan JST (Backpropagation) untuk Prediksi curah hujan (Studi kasus: Kota Pekanbaru). Seminar Nasional Teknologi Informasi Komunikasi dan Industri.
Indrabayu, H. N., Pallu, M. S., dan Achmad, A. 2011. Prediksi Curah Hujan Wilayah Makassar Menggunakan Metode Wavelet-Neural Network. Jurnal Ilmiah Elektikal Enjiniring UNHAS. Vol. 9. No. 2. Hal 50-59.
Idianto, M. 2004. Pengetahuan Sosial Geografi SMP kelas 3. Bekasi. Grasindo.
Karim. 1985. Biologi. Bandung. Pakar Raya.
Karyati, K., Putri, R. O., dan Syafrudin, M. 2018. Suhu dan Kelembaban Tanah Pada Lahan Revegetasi Pasca Tambang di PT Adimitra Baratama Nusantara, Provinsi Kalimantan Timur. Jurnal AGRIFOR. Vol. XVII. No. 1.
Latif, M. A., Pallu, M. S., dan Patanduk, J. 2012. Studi kuantitas dan kualitas air Sungai Tallo sebagai sumber air baku. Jurnal Penelitian Jurusan Sipil Fakultas Teknik Universitas Hasanuddin. Hal, 1-9.
Manalu, M. T. P., 2016. Jaringan Syaraf Tiruan Untuk Memprediksi Curah Hujan Sumatera Utara Dengan Metode Backpropagation (Studi Kasus: BMKG Medan). Riset Komputer. Vol. 3. No. 1.
Mujahidin, A dan Kustiyo, A. 2014. Penerapan Jaringan Saraf Tiruan Untuk Pemodelan Prakiraan Curah Hujan Bulanan. Makalah Seminar Ekstensi. Vol. 1. No. 1.
Puspitaningrum, D. 2006. Pengantar Jaringan Syaraf Tiruan. Yogyakarta. Penerbit Andi.
Ritha, N. 2016. prediksi curah hujan menggunakan Algoritma levenberg Marquardt dan Backpropagation. Tanjung Pinang. Universitas Maritim Raja Ali Haji. Jurnal SUSTAINABLE. Vol. 5. No. 2.
Sari, W. N. 2019. Model Prediksi Curah Hujan Bulanan Untuk Pengelolaan Budidaya Kelapa Sawit Menggunakan Jaringan Saraf Tiruan (JST). Skripsi. Universitas Muhammadiyah Riau.
Sarwoko, D. 2013. Pemodelan Prediksi Total Hujan Pada Musim Hujan Menggunakan Jaringan Saraf Tiruan Dan Support Vector Regression. Bogor. Sekolah Pascasarjana Institut Pertanian Bogor.
Seno, B. A., Adiwijaya, dan Nhita. F., 2014, Prediksi Curah Hujan Menggunakan Evolving fuzzy, Universitas Telkom: Tugas Akhir Ilmu Komputasi, Fakultas Teknik Informatika.
Saiful, A. 2012. Sistem Deteksi Dini Hama Wereng Batang Coklat Menggunakan Jaringan Syaraf Tiruan Backpropagation. Semarang. Universitas Negeri Semarang. Journal of Mathematics Vol. 1. No. 2.
Siang, Jong Jek. 2009. Jaringan Syaraf Tiruan dan Pemogramannya. Yogyakarta. Penerbit Andi.
Sinurat, N. 2016. Analis Arah Angin Terhadap Curah Hujan Menggunakan Equatorial Atmoshphare Radar (EAR) dan Optocal Rain Gauge (ORG) di Atas Koto Tabang Sumatera Barat. Pekanbaru. Universitas Riau.
Sutojo, T, dkk. 2011. Kecerdasan Buatan. Yogyakarta: Penerbit Andi.
Suyanto. 2014. Artificial Inteligence Searching, Reasoning, Planning dan Learning.
Bandung. Informatika.
Yuniar, R. J., Rahadi, D., dan Setyawati, O. 2013. Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh Dengan Algoritma Neural Network Backpropagation. Jurnal EECCIS. Vol. 7. No. 1.
htpps://www.kompasiana.com/amp/arifmhmmd/2017/Reseach. Dampak Curah Hujan Research. Diakses Pada 23 Desember 2020.
Published
2024-09-10
How to Cite
Nurmala, N., Fitri, Y., & Gautami, S. (2024). Artificial Neural Network Based Rainfall Prediction using Back Propagation Technique in Pekanbaru City. Photon: Journal of Natural Sciences and Technology, 14(2), 1-4. https://doi.org/10.37859/jp.v14i2.6679
Section
Physical Sciences
Abstract views: 21 ,

Most read articles by the same author(s)

1 2 > >>