Artificial Neural Network based Rainfall Prediction using Back Propagation Technique in Pekanbaru city
DOI:
 https://doi.org/10.37859/jp.v14i2.6679
 
							
								https://doi.org/10.37859/jp.v14i2.6679
							
						
					Abstract
The intensity of rainfall is a significant weather component that has a profound effect on natural disasters, particularly floods and landslides, particularly in Indonesia. Precise meteorological forecasts and comprehensive climatic data, including accurate rainfall projections, will effectively reduce the hazards associated with severe weather events. Prior studies have demonstrated the efficacy of the Backpropagation Neural Network (NN) approach in accurately forecasting rainfall. The objective of this work is to forecast the daily precipitation in Pekanbaru City using Neural Networks with the Backpropagation technique. The neural network model was constructed using supervised multilayer learning, initially with one hidden layer and subsequently expanded to two hidden layers, utilizing daily data spanning three years (2017-2019). The rainfall forecasting model was constructed by many iterative training and testing procedures. Forecasts of rainfall were categorized into six groups: cloudy, light rain, moderate rain, heavy rain, very heavy rain, and extreme rain. The forecast outcomes were shown using a MATLAB graphical user interface (GUI). While the prediction accuracy of 61% falls short of the national verification threshold of 75%, this work establishes a fundamental framework for the application of neural networks in weather forecasting. The outcomes can be enhanced by using more relevant data and using more precise training procedures to achieve more precise predictions.
Downloads
References
Andriani, M., Indrabayu., dan Aren., S. A. 2015. Prediksi Pemakaian Obat di Instalasi Farmasi Rumah Sakit Pendidikan Dengan Menggunakan Metode Jaringan Syaraf Tiruan. Dielektrika. Vol. 2. No. 1.
Fauset, Laurene. 1994. Fundamentals of Neural Networks : Architectures, algorithms, and applications. United States. Prentice-Hall, Inc.
Handayani, L dan Adri, M. 2015 Penerapan JST (Backpropagation) untuk Prediksi curah hujan (Studi kasus: Kota Pekanbaru). Seminar Nasional Teknologi Informasi Komunikasi dan Industri.
Indrabayu, H. N., Pallu, M. S., dan Achmad, A. 2011. Prediksi Curah Hujan Wilayah Makassar Menggunakan Metode Wavelet-Neural Network. Jurnal Ilmiah Elektikal Enjiniring UNHAS. Vol. 9. No. 2. Hal 50-59.
Ritha, N. 2016. prediksi curah hujan menggunakan Algoritma levenberg Marquardt dan Backpropagation. Tanjung Pinang. Universitas Maritim Raja Ali Haji. Jurnal SUSTAINABLE. Vol. 5. No. 2.
Sari, W. N. 2019. Model Prediksi Curah Hujan Bulanan Untuk Pengelolaan Budidaya Kelapa Sawit Menggunakan Jaringan Saraf Tiruan (JST). Skripsi. Universitas Muhammadiyah Riau.
Saiful, A. 2012. Sistem Deteksi Dini Hama Wereng Batang Coklat Menggunakan Jaringan Syaraf Tiruan Backpropagation. Semarang. Universitas Negeri Semarang. Journal of Mathematics Vol. 1. No. 2.
Sinurat, N. 2016. Analis Arah Angin Terhadap Curah Hujan Menggunakan Equatorial Atmoshphare Radar (EAR) dan Optocal Rain Gauge (ORG) di Atas Koto Tabang Sumatera Barat. Pekanbaru. Universitas Riau.
Kompasiana, 2017. htpps://www.kompasiana.com/amp/arifmhmmd/2017/Reseach. Dampak Curah Hujan Research. Diakses Pada 23 Desember 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yulia Fitri, Sanya Gautami

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Each article is copyrighted © by its author(s) and is published under license from the author(s).
When a paper is accepted for publication, authors will be requested to agree with the Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
 
						 
							







