Implementasi Deteksi Tumor Otak Menggunakan YOLOv11 dan Flask
DOI:

Abstract
Kecerdasan buatan (AI) telah mengalami kemajuan yang sangat signifikan untuk membantu kehidupan masyarakat salah satunya adalah bidang kesehatan. Kemajuan AI didorong karena banyaknya kesalahan yang diakibatkan beberapa faktor fundamental dan tingginya permintaan dari masyarakat terhadap layanan kesehatan terus meningkat. AI juga mampu meminimalkan kesalahan diagnosa maupun pengobatan dalam praktik klinis pasien seperti deteksi tumor otak. Algoritma YOLO yang sering digunakan untuk deteksi objek karena akurasi yang tinggi. YOLO juga dapat digunakan untuk real-time diagnosa menjadi nilai tambah pada algoritma tersebut. YOLOv11 merupakan algoritma terbaru dan memiliki performa yang lebih baik dibandingkan seri sebelumnya. Meskipun begitu, tantangan terhadap keterbatasan dataset menjadi salah satu permasalahan yang perlu diselesaikan. Penelitian yang dilakukan memiliki tujuan yaitu meningkatkan jumlah dataset citra medis menggunakan Data Augmentasi dan mengintegrasikan algoritma YOLO dengan Flask untuk memberikan tampilan yang lebih baik kepada pengguna. Penelitian yang dilakukan menggunakan Data Augmentasi pada dataset menggunakan teknik Flip (Horizontal dan Vertical), 90° Rotate (Clockwise, Counter-Clockwise, Upside Down), serta penambahan Noise: Up to 1.5% of pixels. Hasilnya, diperoleh F1-score 0.951 dari 4 kelas (0.902 Glioma, 0.989 Meningioma, 0.915 Pituitary, dan 0.997 No tumor). Sehingga terbukti efektif mengatasi keterbatasan data. Selanjutnya, Integrasi YOLO dengan Flask dapat memberikan tampilan deteksi objek yang lebih baik tanpa menurunkan skor dari hasil deteksi objek tumor otak, sehingga Flask dapat dijadikan framework yang dipertimbangkan untuk pengembangan interface machine learning
Downloads
References
A. Ardiansyah, K. N. Qodri, D. Al Banna, and M. Z. Al-Baihaqi, “PEMANFAATAN SAM DAN YOLOV8 UNTUK DETEKSI DAN SEGMENTATION MRI TUMOR OTAK,” TEKNIMEDIA: Teknologi Informasi dan Multimedia, vol. 5, no. 1, pp. 82–89, Jun. 2024, doi: 10.46764/teknimedia.v5i1.192.
G. S. Mahendra et al., Tren Teknologi AI: Pengantar, Teori, dan Contoh Penerapan Artificial Intelligence di Berbagai Bidang. PT. Sonpedia Publishing Indonesia, 2024.
A. J. London, “Artificial intelligence in medicine: Overcoming or recapitulating structural challenges to improving patient care?,” Cell Rep Med, vol. 3, no. 5, 2022.
A. Ardiansyah, Buku Monograf Pengenalan Objek Dalam Bidang Kesehatan. PT. Sonpedia Publishing Indonesia, 2024.
B. Z. Wubineh, F. G. Deriba, and M. M. Woldeyohannis, “Exploring the opportunities and challenges of implementing artificial intelligence in healthcare: A systematic literature review,” Urologic Oncology: Seminars and Original Investigations, vol. 42, no. 3, pp. 48–56, Mar. 2024, doi: 10.1016/j.urolonc.2023.11.019.
B. L. Jimma, “Artificial intelligence in healthcare: A bibliometric analysis,” Telematics and Informatics Reports, vol. 9, p. 100041, Mar. 2023, doi: 10.1016/j.teler.2023.100041.
C. Zhu and Y. Guan, “The Risks and Countermeasures of Accounting Artificial Intelligence,” in Proceedings - 2022 3rd International Conference on Electronic Communication and Artificial Intelligence, IWECAI 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 358–361. doi: 10.1109/IWECAI55315.2022.00076.
W. Abbaoui, S. Retal, B. El Bhiri, N. Kharmoum, and S. Ziti, “Towards revolutionizing precision healthcare: A systematic literature review of artificial intelligence methods in precision medicine,” Inform Med Unlocked, vol. 46, p. 101475, 2024, doi: 10.1016/j.imu.2024.101475.
N. Xu, D. Yang, K. Arikawa, and C. Bai, “Application of artificial intelligence in modern medicine,” Clinical eHealth, vol. 6, pp. 130–137, Dec. 2023, doi: 10.1016/j.ceh.2023.09.001.
A. Ardiansyah, A. S. Widagdo, K. N. Qodri, S. F. E. Nugroho, and N. A. R. Putri, “Analisis sentimen terhadap pelayanan Kesehatan berdasarkan ulasan Google Maps menggunakan BERT,” JURNAL FASILKOM, vol. 13, no. 02, pp. 326–333, Sep. 2023, doi: 10.37859/jf.v13i02.5170.
A. Alsufyani, “Performance comparison of deep learning models for MRI-based brain tumor detection,” AIMS Bioeng, vol. 12, no. 1, pp. 1–21, 2025, doi: 10.3934/bioeng.2025001.
A. Ahmed, R. Xi, M. Hou, S. A. Shah, and S. Hameed, “Harnessing Big Data Analytics for Healthcare: A Comprehensive Review of Frameworks, Implications, Applications, and Impacts,” IEEE Access, vol. 11, pp. 112891–112928, 2023, doi: 10.1109/ACCESS.2023.3323574.
A. M. Filho et al., “Cancers of the brain and central nervous system: global patterns and trends in incidence.,” J Neurooncol, Jan. 2025, doi: 10.1007/s11060-025-04944-y.
V. Kaul, S. Enslin, and S. A. Gross, “History of artificial intelligence in medicine,” Gastrointest Endosc, vol. 92, no. 4, pp. 807–812, Oct. 2020, doi: 10.1016/j.gie.2020.06.040.
C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” arXiv preprint arXiv:2207.02696, 2022.
W. Wei et al., “YOLOv11-based multi-task learning for enhanced bone fracture detection and classification in X-ray images,” J Radiat Res Appl Sci, vol. 18, no. 1, p. 101309, Mar. 2025, doi: 10.1016/j.jrras.2025.101309.
W. Fang, L. Wang, and P. Ren, “Tinier-YOLO: A real-time object detection method for constrained environments,” IEEE Access, vol. 8, pp. 1935–1944, 2019.
N. Nyi Myo, A. Boonkong, K. Khampitak, and D. Hormdee, “A Two-Point Association Tracking System Incorporated With YOLOv11 for Real-Time Visual Tracking of Laparoscopic Surgical Instruments,” IEEE Access, vol. 13, pp. 12225–12238, 2025, doi: 10.1109/ACCESS.2025.3529710.
A. Anish, S. R, A. H. Malini, and T. Archana, “Enhancing Surveillance Systems with YOLO Algorithm for Real-Time Object Detection and Tracking,” in 2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS), IEEE, Dec. 2023, pp. 1254–1257. doi: 10.1109/ICACRS58579.2023.10404710.
G. S. Patel, A. A. Desai, Y. Y. Kamble, G. V. Pujari, P. A. Chougule, and V. A. Jujare, “Identification and Separation of Medicine Through Robot Using YOLO and CNN Algorithms for Healthcare,” in 2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI), IEEE, Dec. 2023, pp. 1–5. doi: 10.1109/ICAIIHI57871.2023.10489407.
S. Pandey, K.-F. Chen, and E. B. Dam, “Comprehensive Multimodal Segmentation in Medical Imaging: Combining YOLOv8 with SAM and HQ-SAM Models,” in 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), IEEE, Oct. 2023, pp. 2584–2590. doi: 10.1109/ICCVW60793.2023.00273.
Rachmat Santoso, “Augmentasi Data pada Prasasti Logam untuk Deteksi Aksara Kawi,” JURNAL FASILKOM, vol. 14, no. 1, pp. 234–241, Apr. 2024, doi: 10.37859/jf.v14i1.6952.
R. S. Passa, S. Nurmaini, and D. P. Rini, “YOLOv8 Based on Data Augmentation for MRI Brain Tumor Detection,” Scientific Journal of Informatics, vol. 10, no. 3, 2023.
N. M. Dipu, S. A. Shohan, and K. M. A. Salam, “Deep learning based brain tumor detection and classification,” in 2021 International conference on intelligent technologies (CONIT), IEEE, 2021, pp. 1–6.
B. S. S and N. B. Muppalaneni, “Automated Multimodal Brain Tumor Classification Using a YOLOv7 Approach,” in 2023 9th International Conference on Control, Decision and Information Technologies (CoDIT), IEEE, Jul. 2023, pp. 35–40. doi: 10.1109/CoDIT58514.2023.10284388.
B. Selcuk and T. Serif, “Brain Tumor Detection and Localization with YOLOv8,” in 2023 8th International Conference on Computer Science and Engineering (UBMK), IEEE, 2023, pp. 477–481.
M. M. Chanu, N. H. Singh, C. Muppala, R. T. Prabu, N. P. Singh, and K. Thongam, “Computer-aided detection and classification of brain tumor using YOLOv3 and deep learning,” Soft comput, vol. 27, no. 14, pp. 9927–9940, 2023.
S. Sankara Narayanan, L. C. Meena, K. C. Thanu, and P. Chandrasekar, “Enhancing Glioma Brain Tumor Detection from MRI using Deep Learning Techniques,” in 2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI), IEEE, Dec. 2023, pp. 1–6. doi: 10.1109/ICDSAAI59313.2023.10452496.
C. Mahale, S. Meshram, and A. Pakhmode, “Brain Tumor Detection with YOLOv8,” in 2023 4th International Conference on Intelligent Technologies (CONIT), IEEE, Jun. 2024, pp. 1–5. doi: 10.1109/CONIT61985.2024.10626992.
R. Zaitoon and H. Syed, “A Comprehensive Review: Tumour Recognition, Segmentation and Classification in Brain MRI,” in 2024 International Conference on Expert Clouds and Applications (ICOECA), IEEE, Apr. 2024, pp. 865–870. doi: 10.1109/ICOECA62351.2024.00152.
A. Sorour1, “MRI Images for Brain Tumors For Object Detection or Classification,” Kaggle. Accessed: Jan. 25, 2025. [Online]. Available: https://www.kaggle.com/datasets/ahmedsorour1/mri-for-brain-tumor-with-bounding-boxes/data
R. Khanam and M. Hussain, “YOLOv11: An Overview of the Key Architectural Enhancements,” Oct. 2024, [Online]. Available: http://arxiv.org/abs/2410.17725
K. Mahesh, P. Aishwarya, S. Nithin, S. Hariharan, B. Vaishnavi, and V. S V, “Predictive Cardiovascular Health Assessment with Flask and Machine Learning Models,” in 2025 International Conference on Intelligent Control, Computing and Communications (IC3), IEEE, Feb. 2025, pp. 222–226. doi: 10.1109/IC363308.2025.10956662.
S. Aswathi and G. Nagappan, “A Deep Learning Driven Flask Level Enhanced Web Application for Efficient Communication System,” in 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), IEEE, Feb. 2024, pp. 1207–1210. doi: 10.1109/IC2PCT60090.2024.10486554.
P. Kunekar, N. Bhavsar, K. Das, and S. Bhavsar, “Use of Docker Containerization and Load Balancer to Scale a Flask Application,” in 2024 4th International Conference on Soft Computing for Security Applications (ICSCSA), IEEE, Sep. 2024, pp. 534–541. doi: 10.1109/ICSCSA64454.2024.00092.
B. C. Krishna, P. J. Angelina, S. J. Malla, B. Naseeba, and B. Althaph, “Real-Time Object Detection Using Yolov9c and Flask Web Application,” in 2024 3rd Edition of IEEE Delhi Section Flagship Conference (DELCON), IEEE, Nov. 2024, pp. 1–4. doi: 10.1109/DELCON64804.2024.10866465.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ardiansyah, Adika Sri Widagdo, Krisna Nuresa Qodri, Diesti Hidayani, Mustofa Romadhani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright Notice
An author who publishes in the Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.