Penerapan Algoritma C4.5 Pada Klasifikasi Status Gizi Balita

Authors

  • Yusuf Ramadhan Nasution Universitas Islam Negeri Sumatera Utara
  • Armansyah Universitas Islam Negeri Sumatera Utara
  • Mhd Furqan Universitas Islam Negeri Sumatera Utara
  • Toibatur Rahma Matondang Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.37859/jf.v14i1.6941
Keywords: Machine Learning, C4.5 Algorithm, Nutritional Status of Toddlers, Classification, RapidMiner

Abstract

The study aims to classify the nutritional status of the child using the C4.5 algorithm. The secondary data used is derived from the assessment of the nutrition status of a child in Puskesmas Promji and Puksesmas Suka Makmur. A classification model is constructed using the C4.5 algorithm based on a number of predictor factors that have been determined. The research methodology includes data collection, data preprocessing, model development with C4.5 algorithms, model evaluation, and results analysis. Model evaluation is done using measurements such as accuracy. In addition, the significance of predictor variables in affecting the nutritional status of infants was also evaluated through data analysis. This research contributed to the development of a method of classifying the nutritional status of infants using the C4.5 algorithm approach. The implication of this study is that the classification model developed can be used as a tool to support early identification and intervention against nutritional problems in infants. Furthermore, based on testing using the confusion matrix technique with the 80:20 data division of a total of 502 datasets, consisting of 402 training data and 100 testing data, an accuracy rate of 80 percent was obtained.

Downloads

Download data is not yet available.

References

Seltyawati, V. A. V., & Hartini, El.(2018). Bulkul Ajara Dasar Ilmul Gizi Kelselhatan Masyarakat, Yogyakarta: Delelpulblish

Nulmaliza, N., & Helrlina, S. (2018). Hulbulngan Pelngeltahulan dan Pelndidikan Ibul telrhadap Statuls Gizi Balita. KElSMARS: Julrnal Kelselhatan Masyarakat, Manajelmeln Dan Administrasi Rulmah Sakit, 1(1), 44–48. https://doi.org/10.31539/kelsmars.v1i1.171

Yulliansyah, M. R., B, M., & Franz, A. (2022). Pelrbandingan Meltodel K-Nelarelst Nelighbors dan Naïvel Bayels Classifielr Pada Klasifikasi Statuls Gizi Balita di Pulskelsmas Mulara Jawa Kota Samarinda. Adopsi Telknologi Dan Sistelm Informasi(ATASI), 1(1), 8–20.

Kementrian Kesehatan RI 2022. https://upk.kemkes.go.id/new/kementerian-kesehatan-rilis-hasil-survei-status-gizi-indonesia-ssgi-tahun-2022

Hafizan, H. S. T. B., & Pultri, A. N. S. T. B. (2020). Pelnelrapan Meltodel Klasifikasi Delcision Trelel Pada Statuls Gizi. Julrnal Pelnelrapan Sistelm Informasi (Kompultelr & Manajelmeln), 1(2), 68–72.

Wanto, A. dkk. (2020). Data Mining : Algoritma dan Implelmtasi. Yayasan Kita Melnullis.

Islam, H. I., Mullyadieln, M. K., & Elnri, Ul. (2022). Pelnelrapan Algoritma C4.5 dalam Klasifikasi Statuls Gizi Balita. 116-125.

Dhika, H & F. Delstiawati.(2018). Pelnelrapan Algoritma C45 Ulntulk Pelnilaian Karyawan Pada Relstoran ISSN(El): 2830-3083 221 SElNTIMAS – 25 Agulstuls 2022 Celpat Saji.

Batubara, Dinda Nabila, and Agus Perdana Windarto. 2019. “Analisa Klasifikasi Data Mining Pada Tingkat Kepuasan Pengunjung Taman Hewan Pematang Siantar Dengan Algoritma.” KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer) 3(1):588–92. doi: 10.30865/komik.v3i1.1664.

Cynthia, Eka Pandu, and Edi Ismanto. 2018. “Metode Decision Tree Algoritma C.45 Dalam Mengklasifikasi Data Penjualan Bisnis Gerai Makanan Cepat Saji.” Jurasik (Jurnal Riset Sistem Informasi Dan Teknik Informatika) 3(July):1. doi: 10.30645/jurasik.v3i0.60.

Downloads

Published

2024-04-30