Elderly Signature Identification Using HOG Method and K-Nearest Neighbors Classifier

Authors

  • Nurcahyo Putra I Kadek Institut Bisnis dan Teknologi Indonesia (INSTIKI)
  • Dita Ariani Sukma Dewi Ni Putu Institut Teknologi dan Kesehatan Bali
  • Pusparani Diah Ayu Universitas Pendidikan Ganesha
  • Mupu Dibi Ngabe Universitas Pendidikan Ganesha

DOI:

https://doi.org/10.37859/jf.v14i1.6905
Keywords: Signature, HOG, K-Nearest Neighbors, Image Processing

Abstract

Signature is used to legally approve an agreement, treaty, and state administrative activities. Identification of the signature is needed to ensure the ownership of a signature so that things do not happen that harm the owner of the signature, such as forgery. In this study, the authors identified signatures for people over 50 years of age. The obtained signature is scanned to produce a signature image, the image is pre-processed so that it is ready for feature extraction that can characterize the signature image. The HOG method is used to perform feature extraction to produce a dataset that has 4,536 feature vectors for each signature image. The K-NN classification method is used to identify the signature image, the highest accuracy is obtained when using the value of K = 3, 4 which is 98.6%. The value of K = 7, 8, 10 obtained the lowest accuracy value of 96%. The decrease in accuracy from the highest to the lowest which is not significant shows that the dataset from feature extraction using the HOG method can characterize one signature ownership with other signatures quite well. The HOG method obtains a large feature vector for each signature, so it is recommended to optimize the feature extraction to reduce the feature size and speed up computing.

Downloads

Download data is not yet available.

References

K. Wijaya dan E. P. Widiyanto, “Klasifikasi Kepemilikan Tanda Tangan Menggunakan Convolutional Neural Network dengan Arsitektur AlexNet,” MDP Student Conf., vol. 2, no. 1, hal. 133–143, 2023, doi: 10.35957/mdp-sc.v2i1.4328.

C. R. A. Widiawati dan S. Suliswaningsih, “Analisa Hasil Perbandingan Poly Kernel Dan Normalisasi Poly Kernel Pada Support Vector Machine Sebagai Metode Klasifikasi Citra Tanda Tangan,” J. Inform., vol. 9, no. 1, hal. 71–77, 2022, doi: 10.31294/inf.v9i1.11288.

A. Afrizal, “Permasalahan Yang Dialami Lansia Dalam Menyesuaikan Diri Terhadap Penguasaan Tugas-Tugas Perkembangannya,” Islam. Couns. J. Bimbing. Konseling Islam, vol. 2, no. 2, hal. 91, 2018, doi: 10.29240/jbk.v2i2.462.

W. Fitriani, M. Zidny Naf’an, dan E. Usada, “Ekstraksi Fitur Pada Citra Tanda Tangan Sebagai Ciri Identitias Pemiliknya Menggunakan Discrete Fourier Transform,” Sendi_U, hal. 978–979, 2018.

Y. D. Pristanti, P. Mudjirahardjo, dan A. Basuki, “Identifikasi Tanda Tangan dengan Ekstraksi Ciri GLCM dan LBP,” J. EECCIS, vol. 13, no. 1, hal. 6–10, 2019.

A. Hidayanto, R. R. Isnanto, dan D. K. W. Buana, “IDENTIFIKASI TANDA-TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN-BALIK (BACKPROPAGATION),” 2016.

M. Taşkiran dan Z. G. Çam, “Offline signature identification via HOG features and artificial neural networks,” SAMI 2017 - IEEE 15th Int. Symp. Appl. Mach. Intell. Informatics, Proc., no. January, hal. 83–86, 2017, doi: 10.1109/SAMI.2017.7880280.

H. Mukhtar, F. Alfanico, H. Fu, F. Handayani, dan R. M. Taufiq, “Deep Learning Untuk Klasifikasi Kematangan Buah Mangrove Berdasarkan Warna,” Jural Fasilkom, vol. 13, no. 3, hal. 563–569, 2023.

Y. Sugianela dan N. Suciati, “Ekstraksi Fitur Pada Pengenalan Karakter Aksara Jawa Berbasis Histogram of Oriented Gradient,” JUTI J. Ilm. Teknol. Inf., vol. 17, no. 1, hal. 64, 2019, doi: 10.12962/j24068535.v17i1.a819.

S. Andayani, L. Kusneti, U. Katolik, M. Charitas, dan A. History, “Using the Support Vector Machine method with the HOG feature for classification of orchid types,” vol. 21, no. 1, hal. 82–95, 2024.

A. P. Perdana, S. Bahri, dan U. Ristian, “Implementasi Metode Histogram of Oriented Gradient dan K-Nearest Neighbor untuk Identifikasi Motif Batik,” Coding J. Komput. dan Apl., vol. 11, no. 03, hal. 414–423, 2023.

Y. Yohannes, Y. P. Sari, dan I. Feristyani, “Klasifikasi Wajah Hewan Mamalia Tampak Depan Menggunakan k-Nearest Neighbor Dengan Ekstraksi Fitur HOG,” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 1, hal. 84–97, 2019, doi: 10.28932/jutisi.v5i1.1584.

T. Kobayashi, A. Hidaka, dan T. Kurita, “Selection of histograms of oriented gradients features for pedestrian detection,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4985 LNCS, no. PART 2, hal. 598–607, 2008, doi: 10.1007/978-3-540-69162-4_62.

R. Y. Endra, A. Cucus, F. N. Afandi, dan M. B. Syahputra, “Deteksi Objek Menggunakan Histogram of Oriented Gradient (Hog) Untuk Model Smart Room,” Explor. J. Sist. Inf. dan Telemat., vol. 9, no. 2, 2018, doi: 10.36448/jsit.v9i2.1075.

N. W. Mardiyyah, N. Rahaningsih, I. Ali, dan K. Neighbor, “PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR PADA PREDIKSI PEMBERIAN KREDIT DI SEKTOR FINANSIAL,” vol. 8, no. 2, hal. 1491–1499, 2024.

M. Muchtar dan R. A. Muchtar, “PERBANDINGAN METODE KNN DAN SVM DALAM KLASIFIKASI KEMATANGAN BUAH MANGGA BERDASARKAN CITRA HSV DAN FITUR STATISTIK,” JITET (Jurnal Inform. dan Tek. Elektro Ter., no. 2, hal. 876–884, 2024.

Hidayatunnisa, Kusrini, dan Kusnawi, “Perbandingan Kinerja Metode Naive Bayes dan Support Vector Machine dalam Analisis Soal,” Agustus, vol. 13, no. 2, hal. 173–180, 2023.

Downloads

Published

2024-04-30