Studi Literatur Regulasi dan Etika Artificial Intelligence (AI) dalam Kebijakan Kedokteran Presisi (Precision Medicine)

Authors

  • Faisal Asadi BINUS University

DOI:

https://doi.org/10.37859/jf.v14i1.6836
Keywords: Artificial Intelligence, Regulasi dan Etika, Kedokteran Presisi, Kesehatan

Abstract

Pesatnya perkembangan teknologi Artificial Intelligence (AI) dalam dekade terakhir ini berhasil menjadi pusat perhatian para akademisi dan ilmuan. Tidak hanya akademisi dan ilmuan, tetapi AI juga berhasil merambat ke dalam dunia kesehatan dan kedoketaran. AI in precision medicine menjadi topik yang sangat viral diperbincangkan dalam berbagai forum ilmiah di belahan dunia. Akurasi dan ketapatan AI dalam membantu dokter melakukan diagnosis menjadi suatu topik penelitain yang sedang hangat diperbincangkan karena menyangkut etika dan regulasi dari AI itu sendiri. Maraknya penelitian yang mengkaji tentang regulasi dan etika dari AI dalam kedokteran presisi (precision-medicine) menjadi landasan penelitian ini utnuk meninjau ulang dan melakukan studi literatur yang bersumber pada database jurnal internasional bereputasi yaitu Scopus-database. Dalam studi literatur penelitian ini, kami menemukan beberapa aspek yang perlu diregulasikan dan ditinjau ulang kembali dari segi etika dari AI in precision medicine. Aspek yang ditemukan setelah melakukan review secara comprehensive seperti aspek transparansi dan penjelasan, privasi dan perlindungan data, aspek bias dan fairness, keselamatan dan keamanan, akuntabilitas dan tanggung jawab, serta kolaborasi dan standar global. Beberapa urgensi pentingnya etika AI dalam precision medicine juga dibahas dalam paper penelitian in, seperti kesetaraan dalam akses dan keterjangkauan, keselamatan pasien dan kualitas pelayanan, pengawasan peraturan dan kerangka hukum, efek jangka panjang dan konsekuensi, pendidikan dan kesadaran masyarakat. Selain daripada itu, dalam paper penelitian ini penulis juga memberikan pemaparan terkait trend-research dari AI in precision medicine yang diulas secara detail dan komprehensif.

Downloads

Download data is not yet available.

References

B. F. Far, 2023 “Artificial intelligence ethics in precision oncology: balancing advancements in technology with patient privacy and autonomy,” vol. 4, no. 4, pp. 685–689, doi:10.37349/etat.2023.00160.

M. Doerr and S. Meeder, 2022, “Big Health Data Research and Group Harm: The Scope of IRB Review,” vol. 44, no. 4, pp. 34–38, doi: 10.1002/eahr.500130.

A. F. Alrefaei, Y. M. Hawsawi, D. Almaleki, T. Alafif, F. A. Alzahrani, and M. A. Bakhrebah, 2022, “Genetic data sharing and artificial intelligence in the era of personalized medicine based on a cross‐sectional analysis of the Saudi human genome program,”, vol. 12, no. 1, pp. 1–10, doi: 10.1038/s41598-022-05296-7.

M. A. Zafar et al., 2023 “‘Big Data’ Analyses Underlie Clinical Discoveries at the Aortic Institute,”, vol. 96, no. 3, pp. 427–440, doi: 10.59249/LNDZ2964.

T. Kempowsky-Hamon et al., 2015, “Fuzzy logic selection as a new reliable tool to identify molecular grade signatures in breast cancer - The INNODIAG study,”, vol. 8, no. 1, pp. 1–17, doi: 10.1186/s12920-015-0077-1.

C. Petersen, 2018, “Through Patients’ Eyes: Regulation, Technology, Privacy, and the Future,”, vol. 27, no. 1, pp. 10–15, doi: 10.1055/s-0038-1641193.

R. McFarlane et al., 2023, “PRECISION ALS—an integrated pan European patient data platform for ALS,”, vol. 24, no. 5–6, pp. 389–393, doi: 10.1080/21678421.2023.2215838.

N. M. Patel et al., 2018, “Enhancing Next-Generation Sequencing-Guided Cancer Care Through Cognitive Computing,”, vol. 23, no. 2, pp. 179–185, doi: 10.1634/theoncologist.2017-0170.

Z. Yang, D. Zhou, and J. Huang, 2023, “Identifying Explainable Machine Learning Models and a Novel SFRP2+ Fibroblast Signature as Predictors for Precision Medicine in Ovarian Cancer, vol. 24, no. 23, doi: 10.3390/ijms242316942.

V. Manian, J. Orozco-Sandoval, and V. Diaz-Martinez, 2021, “An Integrative Network Science and Artificial Intelligence Drug Repurposing Approach for Muscle Atrophy in Spaceflight Microgravity,”, vol. 9, no. September, pp. 1–18, doi: 10.3389/fcell.2021.732370.

X. Wang et al., , 2021, “Dual-scale categorization based deep learning to evaluate programmed cell death ligand 1 expression in non-small cell lung cancer,” , vol. 100, no. 20, p. E25994, doi: 10.1097/MD.0000000000025994.

A. C. Till and G. Briganti, 2023, “AI in Child Psychiatry: Exploring Future Tools for the Detection and Management of Mental Disorders in Children and Adolescents,”, vol. 35, pp. 20–25.

D. Primorac, M. Schanfield, and S. Vuk-Pavlović, 2013, “Eighth ISABS conference on forensic, Anthropologic and medical genetics and Mayo clinic lectures on translational medicine, split, Croatia, June 24-28, ,”, vol. 54, no. 3, pp. 217–218, 2013, doi: 10.3325/cmj.2013.54.217.

D. Kainer et al., 2023 “Structural variants identified using non-Mendelian inheritance patterns advance the mechanistic understanding of autism spectrum disorder,”, vol. 4, no. 1, p. 100150, doi: 10.1016/j.xhgg.2022.100150.

J. Reniewicz et al., 2023, “Artificial intelligence / machine-learning tool for post-market surveillance of in vitro diagnostic assays,”, vol. 79, no. November 2023, pp. 82–90, 2024, doi: 10.1016/j.nbt.2023.11.005.

H. Mukhtar, F. Alfanico, H. Fu, F. Handayani, and R. M. Taufiq, 2023, “Deep Learning Untuk Klasifikasi Kematangan Buah Mangrove Berdasarkan Warna,”, vol. 13, no. 3, pp. 563–569.

T. Hadler et al., 2023, “Lazy Luna: Extendible software for multilevel reader comparison in cardiovascular magnetic resonance imaging,”, vol. 238, doi: 10.1016/j.cmpb.2023.107615.

Ardiansyah, Adika Sri Widagdo, Krisna Nuresa Qodri, F. E. N. Saputro, and Nisrina Akbar Rizky P, 2023 “Analisis sentimen terhadap pelayanan Kesehatan berdasarkan ulasan Google Maps menggunakan BERT,”, vol. 13, no. 02, pp. 326–333, doi: 10.37859/jf.v13i02.5170.

U. K. Hisan and M. M. Amri, 2023 “Recommendation of precision medicine application in Indonesia from multiple perspective: a review,” , vol. 12, no. 1, pp. 225–238, doi: 10.11591/ijphs.v12i1.22010.

S. Farahmand, T. Riley, and K. Zarringhalam, 2020 “ModEx: A text mining system for extracting mode of regulation of transcription factor-gene regulatory interaction,”, vol. 102, no. December 2019, p. 103353, doi: 10.1016/j.jbi.2019.103353.

]

Downloads

Published

2024-04-27