Klasifikasi Rimpang Menggunakan Metode K-Nearest Neighbor dan Ekstraksi Ciri Gray Level Co-occurrence Matrix
DOI:
https://doi.org/10.37859/jf.v14i1.6832
Abstract
Rhizome is a modification of plant stems that grow under the soil surface and function as a storage place for food reserves. This plants have internodes that function produce new shoots and roots. Rhizomes are commonly used by people as spices in cooking and herbal medicine. Rhizomes have many types, such as ginger, sand ginger, fingerroot, turmeric, galangal, and curcuma. These types have similarities to each other, such as texture, shape, and color. These similarities can cause problems such as difficulty in identifying the type of rhizome. The solution to this problem is a computer system that can classify the type of rhizomes. The system in this research was built using the K-Nearest Neighbor method and Gray Level Co-occurrence Matrix texture feature extraction. Research data amounted to 500 images with ginger, sand ginger, fingerroot, turmeric, and galangal classes. The stages of this research are data collection, image resizing, conversion to grayscale, GLCM feature extraction, storing the extraction results into dataframe, dividing data into train data and test data, classification with K-NN, and implement GUI to make operation easier. Accuracy results on this system get a value of 74% on test data and 64% on train data with value of K=11.
Downloads
References
Y. Feberian and D. Fitriati, “Klasifikasi Rimpang Menggunakan Convolution Neural Network,” J. Informatics Adv. Comput., vol. 3, no. 1, pp. 10–14, 2022.
A. Suprasetyo, A. D. Kalifa, and S. Diwandari, “Penyiraman Otomatis dan System Monitoring Bibit Kelapa Sawit Menggunakan Metode Fuzzy Sugeno,” J. Fasilkom, vol. 13, no. 3, pp. 431–437, 2023, doi: 10.37859/jf.v13i3.6150.
A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.
D. C. Agustin, M. A. Rosid, and N. Ariyanti, “Implementasi Convolutional Neural Network Untuk Deteksi Kesegaran Pada Apel,” J. Fasilkom, vol. 13, no. 02, pp. 145–150, 2023, doi: 10.37859/jf.v13i02.5175.
R. Kosasih, “Klasifikasi Tingkat Kematangan Pisang Berdasarkan Ekstraksi Fitur Tekstur dan Algoritme KNN,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 4, pp. 383–388, 2021, doi: 10.22146/jnteti.v10i4.462.
A. Arifin, J. Hendyli, and D. E. Herwindiati, “Klasifikasi Tanaman Obat Herbal Menggunakan Metode Support Vector Machine,” Comput. J. Comput. Sci. Inf. Syst., vol. 5, no. 1, p. 25, 2021, doi: 10.24912/computatio.v1i1.12811.
D. Nurnaningsih, D. Alamsyah, A. Herdiansah, and A. A. J. Sinlae, “Identifikasi Citra Tanaman Obat Jenis Rimpang dengan Euclidean Distance Berdasarkan Ciri Bentuk dan Tekstur,” Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 171–178, 2021, doi: 10.47065/bits.v3i3.1019.
B. Zaman, A. Rifai, and M. B. Hanif, “Komparasi Metode Klasifikasi Batik Menggunakan Neural Network Dan K-Nearest Neighbor Berbasis Ekstraksi Fitur Tekstur,” J. Inf. Syst. Informatics, vol. 3, no. 4, pp. 582–595, 2021, doi: 10.51519/journalisi.v3i4.213.
D. Sartika, “Implementasi Algoritma K-Nearest Neighbour dalam Menganalisis Sentimen Terhadap Program Merdeka Belajar Kampus Merdeka (MBKM),” J. Buana Inform., vol. 14, no. 01, pp. 69–76, 2023, doi: 10.24002/jbi.v14i01.7178.
M. Astiningrum, P. P. Arhandi, and N. A. Ariditya, “Identifikasi Penyakit Pada Daun Tomat Berdasarkan Fitur Warna Dan Tekstur,” J. Inform. Polinema, vol. 6, no. 2, pp. 47–50, 2020, doi: 10.33795/jip.v6i2.320.
N. P. Batubara, D. Widiyanto, and N. Chamidah, “Klasifikasi rempah rimpang berdasarkan ciri warna rgb dan tekstur glcm menggunakan algoritma naive bayes,” Inform. J. Ilmu Komput., vol. 16, no. 3, p. 156, 2020, doi: 10.52958/iftk.v16i3.2196.
S. Mawaddah, M. R. Mufid, D. Aditama, N. Islamiya, and T. Wulandari, “Klasifikasi Citra Rimpang Menggunakan Support Vector Machine dan K-Nearest Neighbor,” J. Teknol. Inf. dan Terap., vol. 9, no. 1, pp. 15–18, 2022, doi: 10.25047/jtit.v9i1.250.
F. M. Sarimole and A. Syaeful, “Classification of Durian Types Using Features Extraction Gray Level Co-Occurrence Matrix (Glcm) and K-Nearest Neighbors (Knn),” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 111–121, 2022, doi: 10.37385/jaets.v4i1.959.
R. A. Rizal et al., “Analisis Gray Level Co-Occurrence Matrix (Glcm) Dalam Mengenali Citra Ekspresi Wajah,” J. Mantik Augustus Manajemen, Teknol. Informatiak dan Komun., vol. 3, no. 2, pp. 31–38, 2019.
H. S. Maharani and I. K. D. Nuryana, “Role Of Gray Level Co-Occurrence Matrix for Convolution Neural Network Transfer Learning in Coffee Bean Classification,” (Journal Informatics Comput. Sci., vol. 05, no. 1, pp. 1–6, 2023, doi: 10.26740/jinacs.v5n01.
S. W. Agusta and W. Kaswidjanti, “The Implementation of Color Feature Extraction and Gray Level Co-occurrence Matrix Combination in K-Nearest Neighbor Classification Method for Tomato Leaf Disease Identification Penerapan Kombinasi Ekstraksi Fitur Warna dan Gray Level Co-occurance Matrix,” J. Inform. dan Teknol. Inf., vol. 20, no. 2, pp. 250–262, 2023, doi: 10.31515/telematika.v20i2.10009.
B. E. Salam, P. Sokibi, and A. Sevtiana, “KLASIFIKASI JENIS BATU ALAM MENGGUNAKAN METODE GRAYLEVEL CO-OCCURRENCE MATRIX (GLCM) DAN K-NEAREST NEIGHBOR (K-NN) (STUDI KASUS: PABRIK BATU PRIMA STONE DI DESA BALAD),” Kohesi J. Multidisiplin Saintek, vol. 01, no. 04, pp. 83–93, 2023, doi: 10.3785/kjst.v1i5.195.
C. Wijaya, H. Irsyad, and W. Widhiarso, “Klasifikasi Pneumonia Menggunakan Metode K-Nearest Neighbor Dengan Ekstraksi Glcm,” J. Algoritm., vol. 1, no. 1, pp. 33–44, 2020, doi: 10.35957/algoritme.v1i1.431.
I. Habib Kusuma and N. Cahyono, “Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 302–307, 2023, doi: 10.30591/jpit.v8i3.5734.
Downloads
Published
Issue
Section
License
Copyright Notice
An author who publishes in the Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.










_(1).png)



