Gold Price Forecasting Based on Time Series Using the LSTM Deep Learning Architecture

Authors

  • Diva Arifal Adha Universitas Muhammadiyah Riau
  • Adam Ramadhan University Of Muhammadiyah Riau
  • Habil Maulana University Of Muhammadiyah Riau
  • Patlan Putra Humala Harahap University Of Muhammadiyah Riau
  • Edi Ismanto University Of Muhammadiyah Riau

DOI:

https://doi.org/10.37859/coscitech.v6i2.9980
Keywords: Gold Price, Deep Learning, Forecasting, LSTM, Time series Harga Emas, Deep Learning, Peramalan, LSTM, Time series

Abstract

Gold is one of the most influential commodities in the global economy. Its high price volatility poses a significant challenge for investors, financial analysts, and policymakers in formulating effective strategies and making accurate decisions. Therefore, an accurate prediction method is needed to forecast future gold price movements. This study aims to forecast gold prices using a deep learning approach with the Long Short-Term Memory (LSTM) algorithm. The LSTM model is capable of learning long-term dependencies in time-series data, making it highly suitable for modeling complex and dynamic financial data. The data used in this study consists of daily historical gold prices obtained from reliable sources. A preprocessing phase was carried out to clean and normalize the data before training the model. Furthermore, this study compares the performance of the LSTM model with the Multilayer Perceptron (MLP) model to examine differences in prediction accuracy. Evaluation metrics such as Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) were used to assess model performance. The results show that the LSTM model provides more accurate predictions compared to MLP, with lower error values and better model stability. In conclusion, the deep learning approach, particularly the LSTM model, can serve as an effective alternative for gold price forecasting and support data-driven decision-making in the financial sector.

Downloads

Download data is not yet available.

References

A. Aulia, B. Aprianti, Y. Supriyanto, and C. Rozikin, “Prediksi Harga Emas dengan Menggunakan Algoritma Support Vector Regression (Svr) dan Linear Regression,” J. Ilm. Wahana Pendidik., vol. 8, no. 5, pp. 84–88, 2022, doi: 10.5281/zenodo.6408864.

H. R. Sri, S. Wahyuningsih, and M. Siringoringo, “Peramalan Harga Emas Indonesia Menggunakan Model ARIMA (0,1,1)-GARCH (1,0),” J. Eksponensial, vol. 15, no. 1, pp. 1–10, 2024.

Y. R. M. Ferdinandus, K. Kusrini, and T. Hidayat, “Gold Price Prediction Using the ARIMA and LSTM Models,” Sinkron, vol. 8, no. 3, pp. 1255–1264, 2023, doi: 10.33395/sinkron.v8i3.12461.

A. E. S. H. Maharani, D. A. Azka, and D. Darlena, “Gold Price Fluctuation Forecasting Based on Newton and Lagrange Polynomial Interpolation,” J. Varian, vol. 7, no. 1, pp. 87–98, 2023, doi: 10.30812/varian.v7i1.3230.

M. F. Julianto, M. Iqbal, W. F. Hidayat, and Y. Malau, “Perbandingan Penerapan Algoritma Deep Learning Dalam Prediksi Harga Emas,” INTI Nusa Mandiri, vol. 19, no. 1, pp. 71–76, 2024, doi: 10.33480/inti.v19i1.5559.

F. Fauzi, S. Aulia, A. R. Syaifullah, and T. W. Utami, “Peramalan Harga Emas Menggunakan Pendekatan Long-Short Term Memory (LSTM),” J. Edukasi dan Penelit. Inform., vol. 10, no. 2, p. 252, 2024, doi: 10.26418/jp.v10i2.78332.

Y. Guo, “Research on the application of gold price prediction based on LSTM model,” Inf. Syst. Econ., vol. 5, no. 4, pp. 112–118, 2024, doi: 10.23977/infse.2024.050414.

A. Rosyd, A. Irma Purnamasari, and I. Ali, “Penerapan Metode Long Short Term Memory (Lstm) Dalam Memprediksi Harga Saham Pt Bank Central Asia,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 501–506, 2024, doi: 10.36040/jati.v8i1.8440.

A. P. Meriani and A. Rahmatulloh, “Perbandingan Gated Recurrent Unit (Gru) Dan Algoritma Long Short Term Memory (Lstm) Linear Refression Dalam Prediksi Harga Emas Menggunakan Model Time Series,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 1, 2024, doi: 10.23960/jitet.v12i1.3808.

A. Tholib, N. K. Agusmawati, and F. Khoiriyah, “Prediksi Harga Emas Menggunakan Metode Lstm Dan Gru,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, pp. 620–627, 2023, doi: 10.23960/jitet.v11i3.3250.

S. Sen, D. Sugiarto, and A. Rochman, “Komparasi Metode Multilayer Perceptron (MLP) dan Long Short Term Memory (LSTM) dalam Peramalan Harga Beras,” Ultim. J. Tek. Inform., vol. 12, no. 1, pp. 35–41, 2020, doi: 10.31937/ti.v12i1.1572.

D. R. Alghifari, M. Edi, and L. Firmansyah, “Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia,” J. Manaj. Inform., vol. 12, no. 2, pp. 89–99, 2022, doi: 10.34010/jamika.v12i2.7764.

F. Yanti, B. Nurina Sari, and S. Defiyanti, “Implementasi Algoritma Lstm Pada Peramalan Stok Obat,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 4, pp. 6082–6089, 2024, doi: 10.36040/jati.v8i4.10068.

A. Novian and U. T. Kartini, “Peramalan Loss Of Life Tranformator Berdasarkan Loading dan Temperature Menggunakan LSTM di Gardu Induk 150KV Buduran,” J. Tek. Elektro, vol. 12, no. 1, pp. 81–86, 2023, doi: 10.26740/jte.v12n1.p81-86.

S. I. N. Suwandi, Raras Tyasnurita, and Hanifan Muhayat, “Peramalan Emisi Karbon Menggunakan Metode SARIMA dan LSTM,” J. Comput. Sci. Informatics Eng., vol. 6, no. 1, pp. 73–80, 2022, doi: 10.29303/jcosine.v6i1.436.

Downloads

Published

2025-09-14

How to Cite

Diva Arifal Adha, Adam Ramadhan, Habil Maulana, Patlan Putra Humala Harahap, & Edi Ismanto. (2025). Gold Price Forecasting Based on Time Series Using the LSTM Deep Learning Architecture. Jurnal CoSciTech (Computer Science and Information Technology), 6(2), 329–336. https://doi.org/10.37859/coscitech.v6i2.9980