Comparison Of Random Forest Regressor And Decision Tree Regressor For Crop Yield Prediction

Authors

  • Rizki Faizal Program Studi Teknik Informatika, Fakultas Teknik dan Ilmu Komputer, Universitas Muhammadiyah Pontianak
  • Asrul Abdullah Universitas Muhammadiyah Pontianak
  • Menur Wahyu Pangestika Universitas Muhammadiyah Pontianak

DOI:

https://doi.org/10.37859/coscitech.v6i2.9966
Keywords: Decision Tree, Hasil Panen, MAE, Prediksi, Random Forest Decision Tree, MAE, Prediction, Random Forest, Yield

Abstract

Uncertainty in crop yields due to environmental factors remains a major challenge in Indonesia's agricultural sector. This study aims to compare the performance of the Random Forest Regressor and Decision Tree Regressor algorithms in predicting cultivated crop yields. The dataset used was sourced from Kaggle, consisting of 300,000 rows with features such as crop type, soil type, rainfall, fertilizer use, irrigation, and weather conditions. The system was developed using Python and Streamlit. The methodology includes data preprocessing, model training, and evaluation using the Mean Absolute Error (MAE) metric. The test results show that the Decision Tree Regressor achieved a lower MAE (0.43) compared to the Random Forest Regressor (0.48), resulting in more accurate predictions on this dataset. Feature analysis indicates that rainfall and crop type are the most influential factors. Although Random Forest is generally known for its stability, this study demonstrates that Decision Tree can outperform it within the context of the dataset used. The developed system is expected to assist farmers and policymakers in planning agricultural production more efficiently and in a data-driven manner.

Downloads

Download data is not yet available.

References

B. Pusat Statistik, Analisis Produktivitas Jagung Dan Kedelai Di Indonesia The Analysis Of Maize And Soybean Yield In Indonesia (The Result Of Crop-Cutting Survey), vol. 4. Badan Pusat Statistik, 2024.

Badan Pusat Statistik, potensi-pertanian-indonesia-peta-baru-pertanian-berkelanjutan. Indonesia, 2023.

S. Si. Widya Khonik Zuraina, S. K. Eko Pudjianto, S. Kom. Asep Udin, and S. Si. M. Stat. Neny Kurniawati, STATISTIK PERKEBUNAN UNGGULAN NASIONAL 2021-2023. jakarta: Sekretariat Direktorat Jenderal Perkebunan, 2023.

K. Pangan Berkelanjutan, F. Pertanian, U. Lampung Jl Sumantri Brojonegoro No, and B. Lampung, “Tantangan Sektor Pertanian dalam Memenuhi Challenges of The Agricultural Sector in Meeting the Needs for Sustainable Food Muhammad Ibnu,” 2024. [Online]. Available: http://

D. Swain, S. Lakum, S. Patel, P. Patro, and Jatin, “An Efficient Crop Yield Prediction System Using Machine Learning,” EAI Endorsed Transactions on Internet of Things, vol. 10, pp. 1–5, Dec. 2024, doi: 10.4108/eetiot.5333.

N. Nur, F. Wajidi, S. Sulfayanti, and W. Wildayani, “Implementasi Algoritma Random Forest Regression untuk Memprediksi Hasil Panen Padi di Desa Minanga,” Jurnal Komputer Terapan, vol. 9, no. 1, pp. 58–64, Jun. 2023, doi: 10.35143/jkt.v9i1.5917.

D. Mualfah, W. Fadila, and R. Firdaus, “Teknik SMOTE untuk Mengatasi Imbalance Data pada Deteksi Penyakit Stroke Menggunakan Algoritma Random Forest,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 3, no. 2, pp. 107–113, Aug. 2022, doi: 10.37859/coscitech.v3i2.3912.

Fitri Handayani and Reny Medikawati Taufiq, “Komparasi Algoritma Menggunakan Teknik Smote Dalam Melakukan Klasifikasi Penyakit Stroke Otak,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 5, no. 2, pp. 367–372, Aug. 2024, doi: 10.37859/coscitech.v5i2.7439.

F. Indra Kurniadi, D. Satyananda, E. Santika, and P. Dwi Larasati, “Multi-Output Regression untuk Melakukan Prediksi Luas Wilayah, Kualitas Padi dan Produksi Padi pada Pulau Jawa,” Jurnal Sistem Komputer & Kecerdasan Buatan(SISKOM-KB), vol. 5, pp. 1–6, 2022, doi: https://doi.org/10.47970/siskom-kb.v5i2.269.

A. I. Ramadhan, N. Almajid, and D. Y. Ginting, “Penerapan Decision Tree Regression dalam Memprediksi Harga Rumah di Provinsi Jawa Barat,” Jejaring Penelitian dan Pengabdian Masyarakat (JPPM), vol. 1, no. 3, pp. 111–115, 2024.

X. Huang, “Predictive Models: Regression, Decision Trees, and Clustering,” Applied and Computational Engineering, vol. 79, no. 1, pp. 124–133, Jul. 2024, doi: 10.54254/2755-2721/79/20241551.

P. Dumre, S. Bhattarai, and H. K. Shashikala, “Optimizing Linear Regression Models: A Comparative Study of Error Metrics,” in Proceedings - 4th International Conference on Technological Advancements in Computational Sciences, ICTACS 2024, Institute of Electrical and Electronics Engineers Inc., 2024, pp. 1856–1861. doi: 10.1109/ICTACS62700.2024.10840719.

Downloads

Published

2025-09-05

How to Cite

Rizki Faizal, Abdullah, A. ., & Pangestika, M. W. (2025). Comparison Of Random Forest Regressor And Decision Tree Regressor For Crop Yield Prediction. Jurnal CoSciTech (Computer Science and Information Technology), 6(2), 247–253. https://doi.org/10.37859/coscitech.v6i2.9966