Predictive Modeling of Diabetes Using Multimodel Machine learning and Deep learning Approaches

Authors

  • Fadli Rahmad Hidayatullah Universitas Muhammadiyah Riau
  • Afandi Alsyar Teknik Informatika, Fakultas Ilmu Komputer, Universitas Muhammadiyah Riau
  • Riski Amin Putra Universitas Muhammadiyah Riau
  • Winson Ardhika Ramadhani Universitas Muhammadiyah Riau
  • Edi Ismanto Universitas Muhammadiyah Riau

DOI:

https://doi.org/10.37859/coscitech.v6i2.9812

Abstract

This study discusses the implementation and evaluation of various machine learning algorithms along with one deep learning model for predicting diabetes based on patient medical data. The dataset underwent Preprocessing steps including categorical feature Encoding, feature scaling, and train-test split. The algorithms compared in this study include Logistic regression, Decision Tree, Random Forest, and K-Nearest Neighbors (KNN). Additionally, a Multilayer Perceptron (MLP) model was developed using Keras to explore a deep learning approach with the use of epochs and batch size. The model performance was evaluated using accuracy, precision, and recall metrics, along with learning curve visualizations to analyze model convergence during training. The evaluation results showed that the Random Forest model achieved the highest accuracy among traditional algorithms, while the MLP provided competitive results with strengths in generalization. Visualization of loss and accuracy per epoch offered deeper insight into model behavior throughout the training process. This study demonstrates that a combination of proper data Preprocessing techniques and appropriate model selection significantly influences prediction accuracy. The findings may serve as an early reference for the development of data-driven medical prediction systems and support computer-assisted clinical decision-making (clinical decision support systems).

Downloads

Download data is not yet available.

References

J. Informatika, D. Rekayasa, K. Jakakom, M. A. C, Z. Dwi, and R. Sari, “Penerapan Data Mining Untuk Prediksi Penyakit Diabetes Jurnal Informatika Dan Rekayasa Komputer ( JAKAKOM ),” vol. 4, no. April, pp. 827–834, 2024.

Y. H. Mahendra and R. Kusumawati, “Jurnal Computer Science and Information Technology ( CoSciTech ) Data Mining Analysis for Detecting Diabetes Mellitus Using Naïve Bayes,” vol. 6, no. 1, pp. 39–44, 2025.

K. U. K. L. P. Enyakit, D. I. M. Elitus, S. T. K. Asus, and W. A. D. Esa, “P a k-n n (k-nn) k p d m s k : w d j,” vol. 16, no. 2, pp. 133–142, 2022.

J. Singh, S. B. Goyal, R. K. Kaushal, N. Kumar, and S. S. Sehra, Applied Data Science and Smart Systems. 2024. doi: 10.1201/9781003471059.

N. Ulya, A. Zanetha, E. Sibuea, S. S. Purba, A. Ikka, and C. K. Herbawani, “Indonesia Diabetes,” J. Vol. 4, Nomor 3, Sept. 2023, vol. 4, no. September, pp. 2332–2341, 2023.

A. R. Hidayat, H. Hanipah, A. Nurjanah, and R. Farizki, “Upaya untuk Mencegah Penyakit Diabetes pada Usia Dini,” J. Forum Kesehat. Media Publ. Kesehat. Ilm., vol. 11, no. 2, pp. 63–69, 2022, doi: 10.52263/jfk.v11i2.229.

F. N. Ikhromr, I. Sugiyarto, U. Faddillah, and B. Sudarsono, “Implementasi Data Mining Untuk Memprediksi Penyakit Diabetes Menggunakan Algoritma Naives Bayes dan K-Nearest Neighbor,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 6, no. 1, pp. 416–428, 2023, doi: 10.31539/intecoms.v6i1.5916.

A. Davinka Sembiring Depari, C. Cha Kirana, C. Nissa Oktariana, F. Akbar, and F. Fathoni, “Prediksi Risiko Diabetes Dengan Metode Naive Bayes: Identifikasi Faktor Risiko Utama Dan Evaluasi Akurasi Model,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 4, pp. 6372–6377, 2025, doi: 10.36040/jati.v9i4.14078.

D. C. P. Buani, “Deteksi Dini Penyakit Diabetes dengan Menggunakan Algoritma Random Forest,” EVOLUSI J. Sains dan Manaj., vol. 12, no. 1, pp. 1–8, 2024, doi: 10.31294/evolusi.v12i1.21005.

O. Y. Inonu and K. Magda, “Analisis Kinerja Algoritma Random Forest Dengan Model Machine Learning Pada Dataset Penyakit Diabetes,” vol. 15, no. 1, pp. 1–7, 2025.

M. Fahmuddin, M. K. Aidid, and M. J. Taslim, “Implementasi Analisis Regresi Logistik Dengan Metode Machine Learning Untuk Mengklasifikasi Berita Di Indonesia,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 5, no. 03, pp. 155–162, 2023, doi: 10.35580/variansiunm116.

M. Alidin et al., “Jurnal Computer Science and Information Technology ( CoSciTech ) Application of K-Nearest Neighbors to the Classification of Legal Cases in the Federal Courts of,” vol. 6, no. 1, pp. 85–93, 2025.

E. Stevens, Deep leanring with PyTorch. 2021.

N. Nurussakinah and M. Faisal, “Klasifikasi Penyakit Diabetes Menggunakan Algoritma Decision Tree,” J. Inform., vol. 10, no. 2, pp. 143–149, 2023, doi: 10.31294/inf.v10i2.15989.

Suci Amaliah, M. Nusrang, and A. Aswi, “Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 4, no. 3, pp. 121–127, 2022, doi: 10.35580/variansiunm31.

Downloads

Published

2025-08-10

How to Cite

Fadli Rahmad Hidayatullah, Afandi Alsyar, Riski Amin Putra, Winson Ardhika Ramadhani, & Edi Ismanto. (2025). Predictive Modeling of Diabetes Using Multimodel Machine learning and Deep learning Approaches. Jurnal CoSciTech (Computer Science and Information Technology), 6(2), 158–165. https://doi.org/10.37859/coscitech.v6i2.9812