Implementation of an IoT-Based Smart Cane Using YOLO V3 to Enhance the Mobility and Safety of Visually Impaired Individuals
DOI:
 
							
								https://doi.org/10.37859/coscitech.v6i2.9793
							
						
					Abstract
Visually impaired individuals face significant challenges in mobility and safety during daily activities, especially in public spaces that are not disability-friendly. Conventional white canes are limited in their ability to detect obstacles. This study aims to design and implement a smart cane based on the Internet of Things (IoT) and the real-time object detection algorithm YOLO V3 to enhance the mobility and safety of visually impaired users. The developed system utilizes ultrasonic sensors to detect obstacles on the left and right sides of the user, a GPS module for real-time location tracking via a web server, and an ESP32-CAM integrated with YOLO V3 to detect objects such as vehicles, holes, and people. Information is conveyed to the user through voice alerts using a DFPlayer Mini and is also displayed on an LCD and a web interface. Test results show that the system operates accurately, with an average sensor error rate of only 0.12%, and all components function properly. Usability testing involving 50 respondents indicates a very high level of user satisfaction, with average agreement rates exceeding 85%. This research demonstrates that the integration of IoT and computer vision can produce a smart, responsive, and user-friendly assistive device for the visually impaired.
Downloads
References
G. Tanuwidjaja, J. L. Rustanto, and C. Hartanto, “TEKNOLOGI DIGITAL INOVATIF DALAM APARTEMEN PINTAR : MEMENUHI KEBUTUHAN ORANG LANJUT USIA DAN PENYANDANG DISABILITAS,” pp. 1–16, 2024.
N. Maliak, I. Puspita, and A. Amaliah, “Rancang Bangun Tongkat Cerdas Untuk Penyandang Tunanetra Berbasis Arduino,” Electr. Telecommun. Journal(ELTEC), vol. 4, no. 1, pp. 1–13, 2023.
I. Purwanto, M. Tachyul, and Q. Ramadhani, “Komputika : Jurnal Sistem Komputer Teknologi Internet of Things untuk Meningkatkan Mobilitas Penyandang Tunanetra Tanpa Batasan Ruang dan Waktu Internet of Things Technology to Enhance the Mobility of Visually Impaired Individuals Without Spatial and Temp,” vol. 14, no. April, 2025, doi: 10.34010/7qg31590.
K. A. Baihaqi and Y. Cahyana, “Application of Convolution Neural Network Algorithm for Rice Type Detection Using Yolo v3,” Systematics, vol. 3, no. 2, pp. 272–280, 2021.
A. Pataropura, D. Adhinugraha W, M. Fernand, and Y. Kurnia, “Perancangan Tongkat Pintar Sebagai Alat Bantu Jalan untuk Meningkatkan Kualitas Hidup Peyandang Tunanetra,” Rubinstein, vol. 1, no. 2, pp. 91–102, 2023, [Online]. Available: https://jurnal.buddhidharma.ac.id/index.php/rubin/article/view/21337
A. P. Utomo, A. Sucipto, S. Ayu Wulandari, A. F. Rosyady, M. E. Lazuardi, and D. Dyiono, “Implementasi desain Smart Stick untuk anak tunanetra berbasis GPS terintegrasi dengan smartphone,” J. Eltek, vol. 21, no. 1, pp. 10–19, 2023, doi: 10.33795/eltek.v21i1.369.
N. Rachburee and W. Punlumjeak, “An assistive model of obstacle detection based on deep learning: YOLOv3 for visually impaired people,” Int. J. Electr. Comput. Eng., vol. 11, no. 4, pp. 3434–3442, 2021, doi: 10.11591/ijece.v11i4.pp3434-3442.
S. Somantri, G. P. Insany, S. Olis, and K. Kamdan, “Perancangan Sistem Otomatisasi Pemberi Pakan Ikan Lele Berdasarkan Suhu Air Menggunakan Logika Fuzzy Sugeno,” J. Edukasi dan Penelit. Inform., vol. 9, no. 2, p. 289, 2023, doi: 10.26418/jp.v9i2.65823.
S. Olis, “Penerapan logika fuzzy mamdani pada sistem penyiram tanaman stroberi otomatis berbasis mikrokontroler,” vol. 3, no. 3, pp. 33–41, 2022.
Usnul Latipah, Dwi Sartika Simatupang, and Hermanto, “Sistem otomatisasi pada tanaman hidroponik deep flow technique menggunakan IoT berbasis web,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 2, pp. 322–331, 2023, doi: 10.37859/coscitech.v4i2.5078.
N. Nirma Sari, “Rancang bangun alat sistem pengaman kunci pintu otomatis dengan perintah suara,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 3, pp. 788–794, 2024, doi: 10.37859/coscitech.v4i3.6304.
						









