Classification of Avocado Plant Varieties Based on Leaf Shape Using CNN Algorithm

Authors

  • Agum Pratama Dosen
  • Tito Sugiharto Universitas Kuningan
  • Panji Novantara Universitas Kuningan

DOI:

https://doi.org/10.37859/coscitech.v6i2.9474
Keywords: Avocado Leaf, Deep Learning, CNN, MobileNetV2, SSD, TensorFlow Daun Alpukat, Deep Learning, CNN, MobileNetV2, SSD, TensorFlow.

Abstract

The avocado plants is a popular horticultural commodities in Indonesia, especially in Java, due to their health benefits and high economic value. However, differences in leaf shape across avocado varieties often make identification difficult for both buyers and sellers, which can lead to transaction errors and losses. Manual identification requires specialised skills that are not always available, especially in areas such as Kuningan Regency. To answer these problems, this research aims to develop an Android-based application that is able to classify avocado varieties, namely alligator, kendil, and butter, based on leaf images automatically. This application uses Convolutional Neural Network (CNN) algorithm with SSDMobileNetV2 FPNLite pre-trained model implemented through TensorFlow framework. The dataset used consists of 4,800 avocado leaf images divided for training, validation, and testing processes. The test results show that the model is able to achieve an accuracy rate of 99%. For the alligator class, the precision and recall values were 1.00 and 0.98 respectively; for the kendil class, 1.00 and 0.99; and for the butter class, 0.99 and 1.00. These findings prove that the CNN algorithm is effective in classifying avocado varieties based on visual characteristics of the leaves. Thus, this application has the potential to become a fast, accurate, and practical tool in the process of identifying avocado varieties, both for commercial and educational purposes.

Downloads

Download data is not yet available.

References

[1] P. W. K. Waluyo Sri, “Identifikasi Jenis Buah Alpukat Melalui Sistem Pakar Berbasis Dempster Shafer,” Jurnal BATIRSI, vol. 8, no. 1, pp. 12–16, 2024.
[2] bps.go.id, “Produksi Tanaman Buah-buahan, 2021-2023,” bps.go.id.
[3] F. Ayu, F. Sari, R. Wulanningrum, and L. S. Wahyuniar, “Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) 1275 Penggunaan Metode CNN (Convolutional Neural Network) untuk Klasifikasi Jenis Tanaman Alpukat Berdasarkan Pola Daun,” Online, 2023.
[4] T. Sugiharto, S. Kom, and M. Eng, PENGOLAHAN CITRA DIGITAL MENGGUNAKAN PROSES KONVOLUSI. 2021. [Online]. Available: www.penerbitlitnus.co.id
[5] T. Sugiharto et al., Pengolahan Citra Digital dan Deteksi Objek. Malang: PT Literasi Nusantara Abadi Grup, 2025. [Online]. Available: www.penerbitlitnus.co.id
[6] S. Nurhasanah Nugraha, R. Pebrianto, and E. Fitri, “Penerapan Deep Learning Pada Klasifikasi Tanaman Paprika Berdasarkan Citra Daun Menggunakan Metode CNN,” INFORMATION SYSTEM FOR EDUCATORS AND PROFESSIONALS, vol. 8, no. 2, pp. 133–142, 2023.
[7] A. H. Nasrullah and H. Annur, “Implementasi Metode Convolutional Neural Network Untuk Identifikasi Citra Digital Daun,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 2, p. 726, Apr. 2023, doi: 10.30865/mib.v7i2.5962.
[8] S. Arnandito and T. B. Sasongko, “Comparison of EfficientNetB7 and MobileNetV2 in Herbal Plant Species Classification Using Convolutional Neural Networks,” 2024. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
[9] T. Sugiharto, Saparudin, and W. Fawwaz Al Maki, “Indonesian Cued Speech Transliterate System Using Convolutional Neural Network MobileNet,” in 2024 Ninth International Conference on Informatics and Computing (ICIC), Medan, Indonesia: IEEE, 2024, pp. 1–7. doi: 10.1109/ICIC64337.2024.10957117.
[10] D. Gunawan and H. Setiawan, “Convolutional Neural Network dalam Analisis Citra Medis,” 2022.
[11] A. A. Santosa, R. Y. N. Fu’adah, and S. Rizal, “Deteksi Penyakit pada Tanaman Padi Menggunakan Pengolahan Citra Digital dengan Metode Convolutional Neural Network,” JOURNAL OF ELECTRICAL AND SYSTEM CONTROL ENGINEERING, vol. 6, no. 2, pp. 98–108, Feb. 2023, doi: 10.31289/jesce.v6i2.7930.
[12] M. Rafly Alwanda, R. Putra, K. Ramadhan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” 2020.
[13] J. Khatib Sulaiman, S. Gunawan Ramdhani, E. Itje Sela, and U. Teknologi Yogyakarta, “Implementasi Face Recognition Untuk Sistem Presensi Universitas Menggunakan Convolutional Neural Network,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 6, pp. 2023–4098.
[14] N. A. Purwitasari and M. Soleh, “Implementasi Algoritma Artificial Neural Network Dalam Pembuatan Chatbot Menggunakan Pendekatan Natural Language Processing (Implementation Of Artificial Neural Network Algorithm In Chatbot Development Using Natural Language Processing Approach),” Mar. 2022.
[15] A. Zalukhu et al., “PERANGKAT LUNAK APLIKASI PEMBELAJARAN FLOWCHART,” Jurnal Teknologi Informasi dan Industri, vol. 4, no. 1, 2023.

Downloads

Published

2025-08-04

How to Cite

Pratama, A., Tito Sugiharto, & Panji Novantara. (2025). Classification of Avocado Plant Varieties Based on Leaf Shape Using CNN Algorithm. Jurnal CoSciTech (Computer Science and Information Technology), 6(2), 120–128. https://doi.org/10.37859/coscitech.v6i2.9474