Implentation of CNN for Corn Leaf Disease Identification
DOI:
 
							
								https://doi.org/10.37859/coscitech.v6i2.9462
							
						
					Abstract
Maize is an important commodity in Indonesia's agricultural sector. However, disease attacks on the leaves can reduce the quality and quantity of the harvest. At SMK Negeri 1 Kuningan, disease identification is still done manually, so there is a risk of errors. This research aims to design and build an Android application to automatically detect corn leaf diseases using the Convolutional Neural Network (CNN) algorithm. The development method used is Rapid Application Development (RAD), with a CNN model based on MobileNetV2 architecture trained using a dataset of diseased and healthy corn leaf images. Evaluation using test images resulted in an accuracy of 96.2%. The model was able to detect five categories: leaf spot, downy mildew, leaf blight, leaf rust, and healthy leaves. The F1-Score is 94% Leaf Spot, 96% Leaf Blight, 96% Healthy Leaf, 97% Leaf Blight, and 96% Leaf Rust, respectively. The precision and recall values of all classes are above 94%. These results show that the integration of CNN in mobile applications is effective in helping the automatic identification of corn leaf diseases in an educational environment.
Downloads
References
[2] S. Sarah and Guntoro, “IDENTIFIKASI PENYAKIT TANAMAN JAGUNG BERDASARKAN CITRA DAUN TINJAUAN LITERATUR SISTEMATIS (SLR),” Seminar Nasional Teknologi Informasi & Ilmu Komputer (SEMASTER), vol. Vol 2. No.1, pp. 278–289, 2023.
[3] M. S. Dr. Ir. Moh. Ismail Wahab, “Juklak Kegiatan Budidaya Jagung untuk Pangan 2021 - 16 November 2020 - 50 Halaman - Draft,” Nov. 2020.
[4] J. M. Lapates, “Corn Crop Disease Detection Using Convolutional Neural Network (CNN) to Support Smart Agricultural Farming,” International Journal of Engineering Trends and Technology, vol. 72, no. 6, pp. 195–203, 2024, doi: 10.14445/22315381/IJETT-V72I6P120.
[5] U. Khaira et al., “Rancang Bangun Aplikasi Deteksi Penyakit Tanaman Jagung Melalui Citra Daun Berbasis Android Menggunakan Algoritma Convolutional Neural Network,” 2024.
[6] T. Sugiharto, Saparudin, and W. Fawwaz Al Maki, “Indonesian Cued Speech Transliterate System Using Convolutional Neural Network MobileNet,” in 2024 Ninth International Conference on Informatics and Computing (ICIC), Medan, Indonesia: IEEE, 2024, pp. 1–7. doi: 10.1109/ICIC64337.2024.10957117.
[7] A. T. Wibowo and M. R. R. Allaam, “Klasifikasi Genus Tanaman Anggrek Menggunakan Metode Convolutional Neural Network (CNN),” eProceedings of Engineering, vol. 8, no. 2, pp. 3147–3179, 2021.
[8] T. Sugiharto, S. Kom, and M. Eng, PENGOLAHAN CITRA DIGITAL MENGGUNAKAN PROSES KONVOLUSI. 2021. [Online]. Available: www.penerbitlitnus.co.id
[9] T. Sugiharto et al., Pengolahan Citra Digital dan Deteksi Objek. Malang: PT Literasi Nusantara Abadi Grup, 2025. [Online]. Available: www.penerbitlitnus.co.id
[10] K. R. Wardani and L. Leonardi, “Klasifikasi Penyakit pada Daun Anggur menggunakan Metode Convolutional Neural Network,” Jurnal Tekno Insentif, vol. 17, no. 2, pp. 112–126, 2023, doi: 10.36787/jti.v17i2.1130.
[11] Nurman Hidayat and Kusuma Hati, “Penerapan Metode Rapid Application Development (RAD) dalam Rancang Bangun Sistem Informasi Rapor Online (SIRALINE),” Jurnal Sistem Informasi, vol. 10, no. 1, pp. 8–17, 2021, doi: 10.51998/jsi.v10i1.352.
[12] A. Anhar and R. A. Putra, “Perancangan dan Implementasi Self-Checkout System pada Toko Ritel menggunakan Convolutional Neural Network (CNN),” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 11, no. 2, p. 466, 2023, doi: 10.26760/elkomika.v11i2.466.
						









