Implementation of Deep Learning for Identification of Rhizome Plants Using Convolutional Neural Network Method

  • Diffa Rahmanda Putra Mahendri Universitas Riau
  • T. Yudi Hadiwandra
Keywords: Machine Learning, Rhizome Plants, YOLO, Convolutional Neural Network

Abstract

Rhizome plants are spices widely used by Indonesian people as cooking ingredients or traditional medicine. These plants have
similar appearances, making them difficult to distinguish for some people. Errors in identifying rhizome plants can lead to
poisoning, allergies, or unwanted side effects. To simplify identifying these plants, a system is needed to detect and differentiate
types of rhizome plants, which can be achieved using Convolutional Neural Networks (CNN) with the YOLO algorithm. CNN is
a Machine Learning technique capable of identifying objects based on their visual features, enabling efficient differentiation of
rhizome plants. The image dataset used is divided into six classes, with a total of 700 images. Model testing produced results
with a precision of 98%, recall of 99%, and mAP50-95 of 96%. Future research is expected to increase dataset variety to avoid
overfitting.

Downloads

Download data is not yet available.

References

[1] A. W. Ningsih, I. Hanifa, and A. ’ Yunil Hisbiyah, “Pengaruh Perbedaan Metode Ekstraksi Rimpang Kunyit (Curcuma
domestica) Terhadap Rendemen dan Skrining Fitokimia,” 2020.
[2] C. A. Rahman, D. Santosa, and P. Purwanto, “Aktivitas Rimpang Temulawak sebagai Antibakteri Berdasarkan Lokasi
Tumbuhnya: Narrative Review,” Jurnal Pharmascience, vol. 9, no. 2, p. 327, Oct. 2022, doi: 10.20527/jps.v9i2.14007.
[3] M. S. Lubis, “Implementasi Artificial Intelligence Pada System Manufaktur Terpadu,” SEMNASTEK UISU, 2021,
Accessed: Dec. 16, 2024. [Online]. Available: https://jurnal.uisu.ac.id/index.php/semnastek/article/view/4134
[4] D. Kurniawan, Pengenalan Machine Learning Dengan Python. Elex Media Komputindo, 2020.
[5] N. L. Marpaung, R. J. H. Butar Butar, and S. Hutabarat, “Implementasi Deep learning untuk Identifikasi Daun Tanaman
Obat Menggunakan Metode Transfer learning,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 9, no. 3, p.
348, Dec. 2023, doi: 10.26418/jp.v9i3.63895.
[6] M. I. Rosadi and M. Lutfi, “Identifikasi Jenis Penyakit Daun Jagung Menggunakan Deep Learning Pre-Trained Model,”
Jurnal Explore IT, 2021, doi: 10.35891/explorit.v13i2.2690.
[7] A. Azis, “Identifikasi Jenis Ikan Menggunakan Model Hybrid Deep Learning Dan Algoritma Klasifikasi,” Sebatik, vol.
24, no. 2, pp. 201–206, Dec. 2020, [Online]. Available: https://jurnal.wicida.ac.id/index.php/sebatik/article/view/1057
[8] F. Handayani, A. Sunyoto, and B. A. Putra, “Analisis convolutional neural network LeNet-5 dalam klasifikasi daun
mangga,” vol. 5, no. 3, pp. 562–569, 2024, doi: 10.37859/coscitech.v5i3.8213.
[9] A. Putri Iskandar, Muhammad Ikhsan Thohir, Ivana Lucia Kharisma, Kamdan, and Anggun Fergina, “Implementasi
Deteksi Langsung Pada Sistem Ujian Online Menggunakan Algoritma Convolutional Neural Network,” Jurnal
CoSciTech (Computer Science and Information Technology), vol. 5, no. 2, pp. 483–492, Sep. 2024, doi:
10.37859/coscitech.v5i2.7270.
[10] N. Z. Munantri, H. Sofyan, and M. Y. Florestiyanto, “APLIKASI PENGOLAHAN CITRA DIGITAL UNTUK
Published
2025-04-30
How to Cite
Mahendri, D. R. P., & T. Yudi Hadiwandra. (2025). Implementation of Deep Learning for Identification of Rhizome Plants Using Convolutional Neural Network Method. Jurnal CoSciTech (Computer Science and Information Technology), 6(1), 1-7. https://doi.org/10.37859/coscitech.v6i1.8943
Abstract views: 62 , PDF downloads: 95