Analysis of public sentiment towards the 2024 presidential candidates on instagram using the naïve bayes method

  • Tamara Cindy Samsita Rani Universitas Muhammadiyah Bengkulu
  • Eka Sahputra Universitas Muhammadiyah Bengkulu
Keywords: Classification, Instagram, naïve bayes, president, sentiment analysis

Abstract

In this research, an analysis of public sentiment towards presidential candidate pairs in Indonesia in 2024 was carried out via the social media Instagram. Indonesia itself is one of the countries with the highest number of Instagram users. One of the Instagram posts that is currently in the public spotlight found on the kompascom, najwashihab, and detikcom accounts which post news about the 2024 presidential candidate pairs. In these comments there are various kinds of comments ranging from positive things such as support to negative things such as commenting on the shortcomings of each candidate pair, for this reason text classification is carried out to find out public opinion about the presidential candidate pair. The comment classification process in this research uses the Naïve Bayes algorithm to determine positive, neutral and negative values from thousands of comments. The method that will be applied uses the Python programming language with confusion matrix testing to determine the level of accuracy in the model. Based on the test results, it can be concluded that the use of the Naïve Bayes algorithm used as a classification method in comment-based sentiment analysis on Instagram has a relatively good accuracy rate with an average accuracy of more than 60%.

Downloads

Download data is not yet available.

References

[1] A. D. Akmal, I. Permana, H. Fajri, dan Y. Yuliarti, "Opini Masyarakat Twitter terhadap Kandidat Bakal Calon Presiden Republik Indonesia Tahun 2024," J. Manaj. dan Ilmu Adm. Publik, vol. 4, no. 4, hlm. 292–300, 2022, doi: 10.24036/jmiap.v4i4.160.
[2] H. Permana, YH Chrisnanto, dan H. Ashaury, "Analisis Sentimen terhadap Bakal Calon Presiden 2024 Dengan algoritma Multinomial Naïve Bayes dan Oversampling Smote," JATI (Jurnal Mhs. Tek. Menginformasikan., vol. 7, no. 5, hlm. 3257–3264, 2024, doi: 10.36040/jati.v7i5.7309.
[3] I. P. D. W. Darmawan, G. A. Pradnyana, dan I. B. N. Pascima, "Optimasi Parameter Support Vector Machine Dengan Algoritma Genetika Untuk Analisis Sentimen Pada Media Sosial Instagram," SINTECH (Sains Inf. Technol. J., vol. 6, no. 1, hlm. 58–67, 2023, doi: 10.31598/sintechjournal.v6i1.1245.
[4] A. Hanana, "Trend Postingan Selebrasi sebagai Bentuk Eksistensi Diri Generasi Muda di Sosial Media Instagram," AL MUNIR J. Komun. dan Penyiaran Islam, vol. 13, no. 1, hlm. 87–107, 2022.
[5] S. A. Aaputra, D. Rosiyadi, W. Gata, dan S. M. Husain, "Analisis Sentimen Sentimen Sentimen E-Wallet di Google Play Menggunakan Algoritma Naive Bayes Berdasarkan Pengoptimalan Swarm Partikel," J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, hlm. 377–382, 2019, doi: 10.29207/resti.v3i3.1118.
[6] TD Putra, E. Utami, and M. P. Kurniawan, "Analisis Sentimen Pemilu 2024 dengan Naive Bayes Berbasis Particle Swarm Optimization (PSO)," Menjelajahi, vol. 13, no. 1, hlm. 1–5, 2023, doi: 10.35200/ex.v11i2.13.
[7] R. S. Irawansyah, L. A. S. Irfan, and G. W. Wiriasto, "Analisis Sentimen Terhadap Program Merdeka Belajar-Kampus Merdeka (Mbkm) Pada Twitter Menggunakan Algoritma Naive Bayes Classifier (Nbc)," J. Teknol. Informasi, Komput. dan Apl., vol. 5, no. 2, hlm. 1–8, 2023.
[8] Normah, B. Rifai, S. Vambudi, dan R. Maulana, "Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE," J. Tek. Komput. AMIK BSI, vol. 8, no. 2, hlm. 174–180, 2022, doi: 10.31294/jtk.v4i2.
[9] K. Anwar, "Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes," KLIK Kaji. Ilm. Menginformasikan. dan Komput., vol. 2, no. 4, hlm. 148–155, 2022, doi: 10.30865/klik.v2i4.315.
[10] MS Adhi, M. Z. Nafan, dan E. Usada, "Pengaruh Semantic Expansion pada Naïve Bayes Classifier untuk Analisis Sentimen Tokoh Masyarakat," J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, hlm. 141–147, 2019, doi: 10.29207/resti.v3i2.901.
[11] R. D. Septiana, A. B. Susanto, and T. Tukiyat, “Analisis Sentimen Vaksinasi Covid-19 Pada Twitter Menggunakan Naive Bayes Classifier Dengan Feature Selection Chi-Squared Statistic dan Particle Swarm Optimization,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 5, no. 1, hlm. 49–56, 2021, doi: 10.47970/siskom-kb.v5i1.228.
[12] R. N. Mauliza dan Y. R. Sipayung, "Penerapan Text Mining Dalam menganalisis pendapat masyarakat terhadap Pemilu 2024 Pada Media Sosial X Menggunakan Metode Naive Bayes," Teknomedia J., vol. 9, no. 1, hlm. 1–16, 2024, [Online]. Tersedia: https://doi.org/10.33050/tmj.v9i1.2212
[13] B. S. Prakoso, D. Rosiyadi, H. S. Utama, and D. Aridarma, “Klasifikasi Berita Menggunakan Algoritma Naive Bayes Classifer Dengan Seleksi Fitur Dan Boosting,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, hlm. 227–232, 2019, doi: 10.29207/resti.v3i2.1042.
[14] S. M. P. Tyas, B. S. Rintyarna, dan W. Suharso, "Dampak Ekstraksi Fitur terhadap Analisis Sentimen Berbasis Naïve Bayes pada Kumpulan Data Tinjauan Layanan Indihome," Jari. Zo. J. Teknol. Inf. dan Komun., vol. 13, no. 1, hlm. 1–10, 2022, doi: 10.31849/digitalzone.v13i1.9158.
[15] Y. Oktaviani, I. G. Putu, W. Wedashwara, dan A. Zubaidi, "Klasifikasi Teks Ulasan Pada Web Tripadvisor Tentang Wisata Alam Pulau Lombok Menggunakan Metode Naive Bayes Classifier," vol. 4, no. 2, hlm. 253–262, 2022.
[16] F. Pramono, D. Rosiyadi, dan W. Gata, "Integrasi N-gram, Information Gain, Particle Swarm Optimation di Naïve Bayes untuk Optimasi Sentimen Google Classroom," J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, hlm. 383–388, 2019, doi: 10.29207/resti.v3i3.1119.
[17] R. R. Juandri, R. W. P. Pamungkas, dan A. Fathurrozi, "Rancangan Aplikasi Portal Media Sosial Sebagai Analisis Sentimen Publik Menggunakan Machine Learning Dengan Algoritma Naive Bayes," J. Res. Siswa Komputasi. Sci., vol. 3, no. 2, hlm. 217–228, 2022, doi: 10.31599/jsrcs.v3i2.1760.
[18] N. F. Hasan dan H. Wonda, "Analisis Sentimen Opini Publik Mengenai Kondisi Bahasa Lokal Papua Menggunakan Pendekatan Data Science," J. Teknol. Inf. dan Komun., vol. 13, no. 2, hlm. 125–139, 2022.
[19] S. Puad, G. Garno, and A. S. Y. Irawan, "Analisis Sentimen Masyarakat Pada Twitter Terhadap Pemilihan Umum 2024 Menggunakan Algoritma Naïve Bayes," JATI (Jurnal Mhs. Tek. Menginformasikan., vol. 7, no. 3, hlm. 1560–1566, 2023, doi: 10.36040/jati.v7i3.6920.
[20] M. Qorib, T. Oladunni, M. Denis, E. Ososanya, dan P. Cotae, "Keraguan vaksin Covid-19: Penambangan teks, analisis sentimen, dan pembelajaran mesin pada kumpulan data Twitter vaksinasi COVID-19," Sistem Ahli Aplikasi., vol. 212, no. Agustus 2022, hlm. 118715, 2023, doi: 10.1016/j.eswa.2022.118715.
[21] S. Hikmawan, A. Pardamean, dan S. N. Khasanah, "Sentimen Analisis Publik Terhadap Joko Widodo terhadap wabah Covid-19 menggunakan Metode Machine Learning," J. Kaji. Ilm., vol. 20, no. 2, hlm. 167–176, 2020, doi: 10.31599/jki.v20i2.117.
[22] OP Zusrotun, AC Murti, dan R. Fiati, "Analisis Sentimen Terhadap Belajar Online pada Media Sosial Twitter Menggunakan Algoritma Naive Bayes," J. Nas. Pendidik. Tek. Menginformasikan., vol. 11, no. 3, hlm. 310–319, 2022, doi: 10.23887/janapati.v11i3.49160.
[23] N. L. W. S. R. Ginantra, C. P. Yanti, G. D. Prasetya, I. B. G. Sarasvananda, and I. K. A. G. Wiguna, "Analisis Sentimen Ulasan Villa di Ubud Menggunakan Metode Naive Bayes, Decision Tree, dan K-NN," J. Nas. Pendidik. Tek. Menginformasikan., vol. 11, no. 3, hlm. 205–215, 2022, doi: 10.23887/janapati.v11i3.49450.
[24] N. Y. Hutama, K. M. Lhaksmana, dan I. Kurniawan, "Analisis Teks Pelamar Klasifikasi Kepribadian Menggunakan Bayes Naif Multinomial dan Pohon Keputusan," J. Infotel, vol. 12, no. 3, hlm. 72–81, 2020, doi: 10.20895/infotel.v12i3.505.
[25] B. Imran, M. N. Karim, and N. I. Ningsih, “Klasifikasi Berita Hoax Terkait Pemilihan Umum Presiden Republik Indonesia Tahun 2024 Menggunakan Naïve Bayes Dan Svm,” Din. Rekayasa, vol. 20, no. 1, hlm. 1–9, 2024, doi: 10.20884/1.dinarek.2024.20.1.27.
Published
2024-12-27
How to Cite
Tamara Cindy Samsita Rani, & Eka Sahputra. (2024). Analysis of public sentiment towards the 2024 presidential candidates on instagram using the naïve bayes method . Jurnal CoSciTech (Computer Science and Information Technology), 5(3), 720-729. Retrieved from https://ejurnal.umri.ac.id/index.php/coscitech/article/view/8252
Abstract views: 74 , PDF downloads: 44