Perbandingan Metode Learning Vector Quantization Dan Backpropagation Dalam Klasifikasi Personality Pada Anak
Abstract
This research focuses on classifying children's personalities at Rumah Bermain Bilal using Artificial Neural Network algorithms, specifically Learning Vector Quantization (LVQ) and Backpropagation. The primary objective of this study is to evaluate the effectiveness of these algorithms in categorizing children's personality data and to identify the most accurate method for educational settings. The experiments were conducted with various configurations, including the number of iterations and learning rate, to assess the performance of each algorithm comprehensively. The findings show that the LVQ method demonstrates higher accuracy than Backpropagation. For training data, LVQ achieved an accuracy of 73.47%, whereas Backpropagation reached only 40.82%. For test data, LVQ achieved an accuracy of 84.62%, significantly outperforming Backpropagation's 53.85%. These results indicate that LVQ is more effective in personality classification, especially in an educational context. It is hoped that these findings will assist educational institutions in implementing artificial intelligence-based methods to understand children's personality traits better, thereby supporting the development of more targeted teaching strategies.
Downloads
References
[2] Rukmiyati Rukmiyati, Moh. Dannur, and Fajriyah Fajriyah, “Peran Guru Pendidikan Agama Islam Dalam Mengembangkan Self-Control Siswa Kelas VIII SMPI At-Tablighiyah Desa Ponjanan Timur Kecamatan Batumarmar, Pamekasan,” Sinar Dunia: Jurnal Riset Sosial Humaniora dan Ilmu Pendidikan, vol. 2, no. 4, pp. 66–90, Oct. 2023, doi: 10.58192/sidu.v2i4.1487.
[3] N. Azizah, A. Mutolib, F. Adilla, S. Fadiahusna, and L. Hasanah, “Ragam metode pembelajaran menarik untuk anak usia Dini: konsep dan praktek,” Jurnal Pendidikan Anak Usia Dini, vol. 8, no. 1, pp. 75–83, 2024, doi: 10.24853/yby.8.1.75-83.
[4] M. R. Rifa’i and N. Hafidhoh, “Pengembangan Kepribadian Anak Melalui Pendidikan Karakter di Madrasah Ibtidaiyah,” Awwaliyah: Jurnal Pendidikan Guru Madrasah Ibtidaiyah, vol. 5, no. 1, pp. 1–7, Jun. 2022, doi: 10.58518/awwaliyah.v5i1.920.
[5] M. R. Dwiprihatmo, Sarjon Defit, and Sumijan, “Penerapan jst perceptron untuk mengenali huruf hijaiyah sebagai media pembelajaran anak usia dini,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 5, no. 1, pp. 225–233, May 2024, doi: 10.37859/coscitech.v5i1.6718.
[6] R. Winanjaya and H. Okprana, “Optimalisasi JST dalam Memprediksi Kunjungan Wisatawan Mancanegara Untuk Perencanaan dan Pengembangan Pariwisata yang Efektif,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 4, pp. 1816–1828, Oct. 2023, doi: 10.30865/mib.v7i4.6739.
[7] Y. Yusman, E. Asril, and A. Zamsuri, “PENERAPAN JARINGAN SYARAF TIRUAN DALAM PENGKLASIFIKASIAN TINGKAT PENCEMARAN AIR SUNGAI DI RIAU DENGAN METODE LEARNING VECTOR QUANTIZATION (LVQ ) 2.1,” in Prosiding-Seminar Nasional Teknologi Informasi & Ilmu Komputer (SEMASTER), 2020, pp. 13–27. doi: 10.31849/semaster.v1i1.5488.
[8] S. Karim and M. Z. Abidin, “Penerapan Metode Learning Vector Quantization Pada Penentuan Level Bermain Terhadap Game Edukasi Sang Santri,” Antivirus : Jurnal Ilmiah Teknik Informatika, vol. 16, no. 1, pp. 11–24, Apr. 2022, doi: 10.35457/antivirus.v16i1.1785.
[9] L. L. Van FC, Fajrizal, and Lisnawita, “Implementasi Jaringan Syaraf Tiruan untuk Menentukan Kepribadian Mahasiswa Menggunakan Algoritma Perceptron,” Jurnal Teknologi Informasi & Komunikasi Digital Zone, vol. 11, no. 1, pp. 144–158, May 2020, doi: 10.31849/digitalzone.v11i1.4019ICCS.
[10] D. Nurmala, “Implementasi Jaringan Syaraf Tiruan Dalam Menentukan Kepribadian Menggunakan Algoritma Perceptron,” JRKT (Jurnal Rekayasa Komputasi Terapan), vol. 4, no. 2, pp. 2776–5873, 2024, doi: 10.31849/digitalzone.v11i1.4019.
[11] F. Alamri, S. Ningsih, I. Djakaria, D. Wungguli, and K. I. Hasan, “Perbandingan Metode LVQ Dan Backpropagation Untuk Klasifikasi Status Gizi Anak Di Kecamatan Sangkup,” Jurnal Gaussian, vol. 12, no. 3, pp. 314–321, Sep. 2023, doi: 10.14710/j.gauss.12.3.314-321.
[12] Agus Khumaidi et al., “Prediksi Komsumsi Daya Listrik Pada Panel Listrik Menggunakan Metode Neural Network,” Jurnal Elektronika dan Otomasi Industri, vol. 11, no. 2, pp. 350–362, Jul. 2024, doi: 10.33795/elkolind.v11i2.5497.
[13] A. Santriawan, Gunadi Widi Nurcahyo, and Billy Hendrik, “Prediksi Penjualan Sepeda Motor Yamaha dengan Jaringan Syaraf Tiruan dan Backpropagation (Studi Kasus: CV Sinar Mas),” Jurnal CoSciTech (Computer Science and Information Technology), vol. 5, no. 1, pp. 185–194, May 2024, doi: 10.37859/coscitech.v5i1.6709.
[14] J. Gea, “Implementasi Algoritma Learning Vector Quantization Untuk Pengenalan Barcode Barang,” Journal of Informatics, Electrical and Electronics Engineering, vol. 2, no. 1, pp. 1–4, 2022, doi: 10.47065/jieee.v2i1.385.
[15] A. Aziz, F. Insani, J. Jasril, and F. Syafria, “Implementasi Metode Learning Vector Quantization (LVQ) Untuk Klasifikasi Keluarga Beresiko Stunting,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, pp. 12–20, Jun. 2023, doi: 10.47065/bits.v5i1.3478.

