Analisis Data Mining Untuk Deteksi Diabetes Mellitus Menggunakan Naïve Bayes

Authors

  • Yusril Haza Mahendra Universitas Islam Negri Maulana Malik Ibrahim Malang
  • Ririen Kusumawati Universitas Islam Negri Maulana Malik Ibrahim Malang
  • Imamudin Universitas Islam Negri Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.37859/coscitech.v6i1.7954
Keywords: Diabetes Mellitus, Analisis Data Mining, Naïve Bayes Diabetes Mellitus, Analisis Data Mining, Naïve Bayes

Abstract

Diabetes mellitus is a chronic disease with a continuously increasing global prevalence. it is characterized by high blood glucose levels due to the body's inability to produce or effectively use insulin. the widespread impact on individuals and communities underscores the importance of early detection and proper management. In the digital era, data mining analysis has become a crucial tool in healthcare, enabling the exploration and analysis of health data on a large scale to identify patterns and trends that are difficult to detect manually. in the context of detecting diabetes mellitus, data mining holds great potential for predictive model development. one of the algorithms used is naïve bayes. This study analyzes naïve bayes classification for early symptoms of diabetes mellitus, with the aim of enhancing understanding of risk factors and developing early detection tools. The research findings indicate that naïve bayes has the highest accuracy of 78% with the application of missing value imputation mean. It is hoped that this research will enhance efforts in preventing and managing diabetes mellitus, as well as reducing the burden on individuals and communities as a whole.

Downloads

Download data is not yet available.

References

[1] U. M. Butt et al., “Machine Learning Based Diabetes Classification and Prediction for Healthcare Applications,” vol. 2021, 2021.
[2] N. Sneha and T. Gangil, “Analysis of diabetes mellitus for early prediction using optimal features selection,” J. Big Data, 2019, doi: 10.1186/s40537-019-0175-6.
[3] L. F. Khaerunnisa and A. Fajarwati, “Pengawasan Penerimaan Peserta Didik Baru Jalur Keluarga Ekonomi Tidak Mampu,” J. Agreg. Aksi Reformasi Gov. dalam Demokr., vol. 7, no. 2, pp. 163–176, 2019, doi: 10.34010/agregasi.v7i2.2559.
[4] K. Puspita, Y. Alkhalifi, and H. Basri, “Rancang Bangun Sistem Informasi Penerimaan Peserta Didik Baru Berbasis Website Dengan Metode Spiral,” Paradig. - J. Komput. dan Inform., vol. 23, no. 1, pp. 35–42, 2021, doi: 10.31294/p.v23i1.10434.
[5] T. Madhubala, R. Umagandhi, and P. Sathiamurthi, “Diabetes Prediction using Improved Artificial Neural Network using Multilayer Perceptron,” vol. 9, no. 12, pp. 167–179, 2022.
[6] S. Shafaeizadeh, L. Harvey, M. Abrahamse-berkeveld, and L. Muhardi, “Gestational Diabetes Mellitus Is Associated with Age-Specific Alterations in Markers of Adiposity in O ff spring : A Narrative Review,” pp. 1–10.
[7] R. Asrianto and M. Herwinanda, “Jurnal Computer Science and Information Technology ( CoSciTech ) algoritma support vector machine,” vol. 3, no. 3, pp. 431–440, 2022.
[8] M. Jannah, E. Erawan, and H. Burhanuddin, “Implementasi Program Penerimaan Peserta Didik Baru (Ppdb) Online Di Smp Negeri 21 Samarinda,” Ejournal.Ap.Fisip-Unmul.Ac.Id, vol. 8, no. 3, pp. 9303–9317, 2020, [Online]. Available: https://ejournal.ap.fisip-unmul.ac.id/site/wp-content/uploads/2020/08/EJOURNAL B (08-05-20-05-29-34).pdf
[9] I. N. Sanita, S. Defit, and G. W. Nurcahyo, “Jurnal Computer Science and Information Technology ( CoSciTech ) Sistem Pendukung Keputusan Menggunakan Metode Multi Attribute Utility Theory ( MAUT ) Decision Support System Using The Method Attribute Utility Theory ( MAUT ) For Digital Service Selection,” vol. 4, no. 1, pp. 216–225, 2023.
[10] M. Unik and Sri Nadriati, “Overview: Random Forest Algorithm for PM2.5 Estimation Based on Remote Sensing,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 422–430, 2022, doi: 10.37859/coscitech.v3i3.4380.
[11] A. Ridwan, “Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus,” vol. IV, no. September, pp. 15–21, 2020.
[12] A. Afifuddin and L. Hakim, “Deteksi Penyakit Diabetes Mellitus Menggunakan Algoritma Decision Tree Model Arsitektur C4 . 5,” vol. 3, no. September, pp. 25–33, 2023.
[13] M. A. Wiratama and W. M. Pradnya, “OPTIMASI ALGORITMA DATA MINING MENGGUNAKAN BACKWARD ELIMINATION UNTUK KLASIFIKASI PENYAKIT DIABETES Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 2,” vol. 11, pp. 1–12, 2022.

Downloads

Published

2025-05-27

How to Cite

Yusril Haza Mahendra, Ririen Kusumawati, & Imamudin. (2025). Analisis Data Mining Untuk Deteksi Diabetes Mellitus Menggunakan Naïve Bayes . Jurnal CoSciTech (Computer Science and Information Technology), 6(1), 39–44. https://doi.org/10.37859/coscitech.v6i1.7954