Analisis Sentimen Terhadap Berita Hoaks Lowongan Kerja Dengan Metode Naive Bayes

Analisis Sentimen Terhadap Berita Hoaks Lowongan Kerja Dengan Metode Naive Bayes

  • Dwi Sartika Simatupang Universitas Esa Unggul
  • Siti Nursinta Universitas Bina Nusantara
Keywords: sentiment analysis, hoax news, twitter, job vacancies, naive bayes.

Abstract

Hoax news or fake news has become a significant problem in today's digital era, the news in question is information on job vacancies on social media, one of which is Twitter, which is widely discussed by job seekers. The spread of hoax news related to job vacancies can cause harm to job seekers who rely on this information to find work. Therefore, sentiment analysis of hoax job vacancies is important to help users distinguish between valid and hoax information. This study aims to analyze sentiment towards hoax news related to job vacancies on Twitter. The method used is the Naive Bayes method, which is a classification method commonly used in sentiment analysis. Hoax news dataset collected from job vacancy information will be processed and features that are relevant to job vacancies will be identified. Furthermore, the Naive Bayes sentiment analysis model will be developed to classify hoax news sentiment as positive or negative. The results of sentiment analysis will help users identify and avoid hoax news related to job vacancies. In addition, the results of sentiment analysis also improve the quality of the content displayed and strengthen user confidence in the information provided. It is hoped that this research will contribute to overcoming the problem of hoax news on Twitter, improve the quality of available information, and assist job seekers in making better decisions in finding work.

 

Downloads

Download data is not yet available.

References

[1] Wijaya, A., Rozikin, C., & Sari, B. N. (2022). Penerapan Text Mining Untuk Klasifikasi Judul Berita Hoax Vaksinasi COVID-19 Menggunakan Algoritma Support Vector Machine. Jurnal Ilmiah Wahana Pendidikan, 8(16), 11–20.
[2] Alpian, D., Krisna, N., & Salamah, U. (2022). PERBANDINGAN ALGORITMA NAÏVE BAYES DAN K-NEAREST NEIGHBOR UNTUK KLASIFIKASI BERITA HOAX KESEHATAN DI MEDIA SOSIAL TWITTER. Jurnal Teknik Informatika Kaputama (JTIK), 6(2).
[3] Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI. Jurnal Teknoinfo, 14(2), 115.
[4] Gunawan, B., Sasty, H., #2, P., Esyudha, E., & #3, P. (2018). JEPIN (Jurnal Edukasi dan Penelitian Informatika) Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. 4(2), 17–29.
[5] Sriyano, C. S., & Setiawan, E. B. (n.d.). Pendeteksian Berita Hoax Menggunakan Naive Bayes Multinomial Pada Twitter dengan Fitur Pembobotan TF-IDF.
[6] Kurniadi Widodo, B., Hafifah Matondang, N., & Sandya Prasvita, D. (n.d.). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Penggunaan Aplikasi Jobstreet Implementation of Naive Bayes Algorithm For Sentiment Analysis Of The Use Of Jobstreet Application. In Agustus (Vol. 21, Issue 3).
[7] Prosiding Seminar Nasional Teknologi dan Informatika, 2017 : Kudus, 25 Juli 2017. (n.d.)

[9] Eka Prasetyaningrum and Sari Atul Hilaliyah, “Analisis Perilaku Adopsi Digital Marketing Pada UMKM Menggunakan Model UTAUT3 di Era New Normal,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 2, pp. 226–233, 2022, doi: 10.37859/coscitech.v3i2.3955.
[10] A. Supriyatna, “Sistem Analisis Data Mahasiswa Menggunakan Aplikasi Online Analytical Processing (Olap) Data Warehouse,” J. Pilar Nusa Mandiri, vol. 12, no. 1, pp. 62–71, 2016.
Published
2024-09-03
How to Cite
Simatupang, D. S., & Siti Nursinta. (2024). Analisis Sentimen Terhadap Berita Hoaks Lowongan Kerja Dengan Metode Naive Bayes. Jurnal CoSciTech (Computer Science and Information Technology), 5(2), 474-482. https://doi.org/10.37859/coscitech.v5i2.7719
Abstract views: 57 , PDF downloads: 35