Implementation ann perceptron to recognize hijaiyah letters as learning media for early children

Authors

  • Mohammad Reza Dwiprihatmo Universitas Putra Indonesia
  • Sarjon Defit Universitas Putra Indonesia YPTK Padang
  • Sumijan Universitas Putra Indonesia YPTK Padang

DOI:

https://doi.org/10.37859/coscitech.v5i1.6718
Keywords: computer vision, digital image, hijaiyah letters, perceptron, classification komputer vision, citra digital, huruf hijaiyah, perceptron, klasifikasi

Abstract

Computer vision is the transformation of data obtained or taken from a webcam into another form to determine the decisions to be taken. All forms of transformation are carried out to achieve certain goals. One of the techniques that supports the application of computer vision to a system is digital image processing, because the aim of digital image processing techniques is to transform images into digital format so that they can be processed by a computer. Computer vision and digital image processing can be implemented into a hijaiyah letter pattern recognition system on cards that have been prepared and placed on a white board which is supported by the perceptron algorithm artificial neural network method which is used as a learning technique for the system to be able to learn and recognize hijaiyah letter patterns. This research aims to enable computers to read hijaiyah letters using a camera. The methods used in this research are image processing and the perceptron algorithm. The data set processed in this research comes from 783 hijaiyah letters consisting of 29 hijaiyah letters and 30 samples per each hijaiyah letter. How it works is that each hijaiyah letter is captured using a webcam and produces a continuous image which is transformed into a digital image and processed using several techniques including grayscale images, binary images and cropping images. The results of this research are that the system is able to identify and classify hijaiyah letters with a testing rate of 99,746%. Therefore, this research can be a reference in the modern teaching and learning process and is expected to help children's interest in learning hijaiyah letters.

Downloads

Download data is not yet available.

References

[1] Masnur, A. Wafiah, D. M. Sari, M. Yunus, and M. R. Rapi, “Jurnal Computer Science and Information Technology ( CoSciTech ) Aplikasi Media pembelajaran huruf hijaiyah dengan metode bahasa bugis berbasis android Hijaiyah letter learning media application with the Android-based Bugis language method,” vol. 4, no. 2, pp. 411–417, 2023.
[2] N. R. Sari and Y. Mar’atullatifah, “2023.Nimas Penerapan. MultiLayer Perceptron Untuk Identifikasi Kanker Payudara”.
[3] A. Sriyanto and E. Farihah, “Use of Container Materials as an Enhancement Effort to identify the letters of hijayah in the Child,” vol. 7, no. 1, pp. 1–14, 2023, doi: 10.31849/paud-lectura.v%vi%i.11515.
[4] J. Kusuma, Rubianto, R. Rosnelly, Hartono, and B. H. HAYADI, “Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunkan Algoritma Support Vector Machine ,K-Nearest Neighbors dan Multilayer Perceptron,” vol. 4, 2022, doi: 10.52158/jacost.484.
[5] O. V. Putra, A. Musthafa, and M. Kholil, Klasifikasi Intonasi Bahasa Jawa Khas PONOROGO Menggunakan Algoritma Multilayer Perceptron Neural Network. 2021.
[6] J. KUSUMA, B. H. HAYADI, W. WANAYUMINI, and R. ROSNELLY, “Komparasi Metode Multi Layer Perceptron (MLP) dan Support Vector Machine (SVM) untuk Klasifikasi Kanker Payudara,” MIND J., vol. 7, no. 1, pp. 51–60, Jun. 2022, doi: 10.26760/mindjournal.v7i1.51-60.
[7] M. H. Yuhandri and L. Mayola, “Identifikasi Pola Seleksi Penentuan Calon Wali Nagari dengan Menggunakan Artificial Neural Network Algoritma Perceptron,” J. KomtekInfo, pp. 158–165, Dec. 2023, doi: 10.35134/komtekinfo.v10i4.485.
[8] A. C. Oktavianti, A. B. Setiawan, and N. Shofia, “Pengenalan Pola Karakter Aksara Jawa Menggunakan Metode Perceptron Aplikasi Carakan.”
[9] D. Pardede and B. Herawan Hayadi, “KAJIAN LITERATUR MULTI LAYER PERCEPTRON: SEBERAPA BAIK PERFORMA ALGORITMA INI”.
[10] Haryani, C. I. Agustyaningrum, A. Surniandari, S. Sahara, and R. K. Sari, “Algoritma Klasifikasi Multilayer Perceptron Dalam Analisa Data Kebakaran Hutan”.
[11] N. Rustiana Dewi, A. Desiani, F. Salamah, Y. Andriani, M. Dan Ilmu, and P. Alam, “ALGORITMA K-NEAREST NEIGHBOR (K-NN) DAN SINGLE LAYER PERCEPTRON (SLP) UNTUK KLASIFIKASI PENYAKIT ALZHEIMER,” J. Teknol. Ter. |, vol. 9, no. 2, 2023, [Online]. Available: www.kaggle.
[12] Y. A. Rindri and A. Fitriyani, “Analisis Perbandingan Kinerja Algoritma Multilayer Perceptron dan K-Nearest Neighbor pada Klasifikasi Tipe Migrain Comparative Analysis of Multilayer Perceptron and K-Nearest Neighbor Algorithms in Migraine Type Classification,” J. Teknol. dan Inf., doi: 10.34010/jati.v13i1.
[13] A. H. Husen, A. S. Nur Afiah, S. Soesanti, and F. Tempola, “Deteksi Dini Resiko Tuberkulosis di Kota Ternate: Pelacakan dan Implementasi Algoritma Klasifikasi,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 2, pp. 217–225, Aug. 2022, doi: 10.37859/coscitech.v3i2.3986.
[14] U. K. Karir, A. Smkn, G. T. Angkatan, A. Prasetyo, D. Ana, and L. Sari, “Implementasi Jaringan Syaraf Tiruan Model Perceptron.”
[15] F. Hemanto Laia, R. Rosnelly, K. Buulolo, M. Christin Lase, and A. Naswar, “KLASIFIKASI KEMATANGAN BUAH MANGGA MADANI BERDASARKAN BENTUK DENGAN JARINGAN SYARAF TIRUAN METODE PERCEPTRON,” J. DEVICE, vol. 13, no. 1, pp. 14–20.

Published

2024-05-21

How to Cite

Dwiprihatmo, M. R., Sarjon Defit, & Sumijan. (2024). Implementation ann perceptron to recognize hijaiyah letters as learning media for early children . Jurnal CoSciTech (Computer Science and Information Technology), 5(1), 225–233. https://doi.org/10.37859/coscitech.v5i1.6718