Implementation of Convolutional Neural Network for Electronic Identity Card (e-KTP) Image Classification

Authors

  • SATRIA SATRIA UNIVERSITAS PUTRA INDONESIA YPTK PADANG
  • Sumijan Universitas Putra Indonesia YPTK Padang
  • Billy Hendrik Universitas Putra Indonesia YPTK Padang

DOI:

https://doi.org/10.37859/coscitech.v5i1.6708
Keywords: Electronic Identity Card (e-KTP), Image, Classification, Convolutional Neural Network KTP-el, Citra, Klasifikasi, Convolutional Neural Network

Abstract

The Electronic Identity Card (e-KTP) serves as the official proof of identity for residents, issued by the relevant implementing agency across the entire territory of the Unitary State of the Republic of Indonesia. Mandatory for both Indonesian citizens (WNI) and foreigners (WNA) holding a Permanent Stay Permit (ITAP) and aged 17 or married, the e-KTP is susceptible to potential damage, often arising from factors such as prolonged usage or improper handling. Physical damage to the e-KTP can impede the document's ability to accurately verify identity, potentially impacting public services and government administration. This research aims to assess the condition of e-KTPs, determining whether they are in good or damaged condition. The study employs the Convolutional Neural Network (CNN) method, known for its significant results in image recognition by attempting to emulate the image recognition system in the human visual cortex, facilitating the processing of image information. This method comprises two architectural layers: Feature Learning and Classification. The dataset utilized in this research comprises images of e-KTPs sourced from the Population and Civil Registration Office of Bengkalis Regency, totaling 400 images categorized into two classes: 200 for good condition and 200 for damaged condition. The research findings enable the determination of the e-KTP image's condition, achieving a 90% accuracy rate.

Downloads

Download data is not yet available.

References

[1] M. A. Hasan, Y. Riyanto, and D. Riana, “Grape leaf image disease classification using CNN-VGG16 model,” J. Teknol. dan Sist. Komput., vol. 9, no. 4, pp. 218–223, 2021, doi: 10.14710/jtsiskom.2021.14013.
[2] F. N. Cahya, N. Hardi, D. Riana, and S. Hadiyanti, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network (CNN),” Sistemasi, vol. 10, no. 3, p. 618, 2021, doi: 10.32520/stmsi.v10i3.1248.
[3] E. Oktafanda, “Klasifikasi Citra Kualitas Bibit dalam Meningkatkan Produksi Kelapa Sawit Menggunakan Metode Convolutional Neural Network (CNN),” J. Inform. Ekon. Bisnis, vol. 4, no. 3, pp. 72–77, 2022, doi: 10.37034/infeb.v4i3.143.
[4] F. H. Hawari, F. Fadillah, M. R. Alviandi, and T. Arifin, “Klasifikasi Penyakit Tanaman Padi Menggunakan Algoritma Cnn (Convolutional Neural Network),” J. Responsif Ris. Sains dan Inform., vol. 4, no. 2, pp. 184–189, 2022, doi: 10.51977/jti.v4i2.856.
[5] N. IBRAHIM et al., “Klasifikasi Tingkat Kematangan Pucuk Daun Teh menggunakan Metode Convolutional Neural Network,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 10, no. 1, p. 162, 2022, doi: 10.26760/elkomika.v10i1.162.
[6] A. Antoni, T. Rohana, and A. R. Pratama, “Implementasi Algoritma Convolutional Neural Network Untuk Klasifikasi Citra Kemasan Kardus Defect dan No Defect,” Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 1941–1950, 2023, doi: 10.47065/bits.v4i4.3270.
[7] A. Akram, K. Fayakun, and H. Ramza, “Klasifikasi Hama Serangga pada Pertanian Menggunakan Metode Convolutional Neural Network,” Build. Informatics, Technol. Sci., vol. 5, no. 2, pp. 397–406, 2023, doi: 10.47065/bits.v5i2.4063.
[8] A. Mareta Tama and R. Candra Noor Santi, “Klasifikasi Jenis Tanaman Hias Menggunakan Metode Convolutional Neural Network (Cnn) Ornamental Plant Classification Using the Convolutional Neural Network (Cnn) Method,” J. Inf. Technol. Comput. Sci., vol. 6, no. 2, pp. 764–770, 2023.
[9] M. F. Naufal, J. Siswantoro, and M. G. K. Wicaksono, “Klasifikasi Tulisan Tangan Pada Resep Obat Menggunakan Convolutional Neural Network,” Techno.Com, vol. 22, no. 2, pp. 508–526, 2023, doi: 10.33633/tc.v22i2.8075.
[10] Rima Dias Ramadhani, A. Nur Aziz Thohari, C. Kartiko, A. Junaidi, T. Ginanjar Laksana, and N. Alim Setya Nugraha, “Optimasi Akurasi Metode Convolutional Neural Network untuk Identifikasi Jenis Sampah,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 312–318, 2021, doi: 10.29207/resti.v5i2.2754.
[11] K. Azmi, S. Defit, and S. Sumijan, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” J. Unitek, vol. 16, no. 1, pp. 28–40, 2023, doi: 10.52072/unitek.v16i1.504.
[12] R. Hayami, S. Mohnica, T. Informatika, I. Komputer, U. M. Riau, and U. M. Riau, “Jurnal Computer Science and Information Technology ( CoSciTech ),” vol. 4, no. 1, pp. 4–9, 2023.
[13] R. Firdaus, Joni Satria, and B. Baidarus, “Klasifikasi Jenis Kelamin Berdasarkan Gambar Mata Menggunakan Algoritma Convolutional Neural Network (CNN),” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 267–273, 2022, doi: 10.37859/coscitech.v3i3.4360.

Published

2024-05-18

How to Cite

SATRIA, S., Sumijan, & Billy Hendrik. (2024). Implementation of Convolutional Neural Network for Electronic Identity Card (e-KTP) Image Classification. Jurnal CoSciTech (Computer Science and Information Technology), 5(1), 169–176. https://doi.org/10.37859/coscitech.v5i1.6708