Peramalan Kedatangan Wisatawan ke Suatu Negara Menggunakan Metode Support Vector Machine (SVM)

  • Harun Mukhtar Universitas Muhammadiyah Riau
  • Rahmad Gunawan Universitas Muhammadiyah Riau
  • Amin Hariyanto Universitas Muhammadiyah Riau
  • Syahril Universitas Muhammadiyah Riau
  • Wide Mulyana Universitas Muhammadiyah Riau
Keywords: Traveler, Time Series, Forecasting, Support Vector Machine, Kernel


Tourism is one of the most promising ecosystems for economic sectors worldwide. A strong tourism sector directly contributes to the country's national income, fights unemployment, and improves the balance of payments. Tourism development can be seen from the increase in arrivals to a nation; based on data obtained from the UNWTO from 1995-2019, it has increased and decreased. The sudden increase and decrease in tourists will have positive and negative impacts. Forecasting is an activity to predict events that will occur in the future by taking data from the past. So this study will expect tourist arrivals to a country using the Support Vector Machine (SVM) method. SVM has properties about maximizing margins and kernel tricks to map nonlinear data. The results obtained in this study indicate that SVM Confidence is 86.3%, has a MAPE value of 56.00%, and an RMSE worth of 11126.36 from the total data of 53 countries. And forecasting is carried out in 5 countries with the highest tourist visits. The results obtained are excellent: SVM Confidence of 99.13%, a MAPE value of 2.78%, and an RMSE value of 2783.57.


Download data is not yet available.


H. H. Liu, L. C. Chang, C. W. Li, and C. H. Yang, “Particle swarm optimization-based support vector regression for tourist arrivals forecasting,” Comput. Intell. Neurosci., vol. 2018, 2018, doi: 10.1155/2018/6076475.

A. Ete, M. Fitrianawati, and M. Arifin, “Forecasting the Number of Tourist Arrivals to Batam by applying the Singular Spectrum Analysis and the Arima Method,” Adv. Soc. Sci. Educ. Humanit. Res., vol. 317, pp. 119–126, 2019, doi: 10.2991/iconprocs-19.2019.24.

H. Setiawan, H. Mukhtar, and Soni, “Aplikasi Pengenalan Situs Bersejarah di Kota Pekanbaru dengan Augmented Reality Markerless Berbasis Android,” J. FASILKOM, vol. 9, no. 2, pp. 387–395, 2019.

T. O. Purba, H. Mukhtar, and Y. Fatma, “Pengenalan Monumen-Monumen Bersejarah Di Kota Pekanbaru Menggunakan Augmented Reality ( AR ) Berbasis Android,” Proseding SemNas CTiA, vol. 1, no. 1, pp. 1–4, 2019.

R. Putra, A. Hafid, E. Arribe, and H. Mukhtar, “Rancang bangun aplikasi rekomendasi akomodasi dan informasi pariwisata berbasis android di kota pekanbaru,” Fasilkom, vol. 9, no. 3, pp. 41–46, 2019.

H. F. Amran, H. Mukhtar, J. Al Amien, and M. I. Akbar, “Digitalisasi Cagar Budaya Kota Pekanbaru menggunakan web,” Fasilkom, vol. XII, no. II, pp. 75–79, 2022.

R. C. Yahya, H. Mukhtar, R. Hayami, and M. Unik, “Rancang Bangun Aplikasi Pemetaan Digital Pada Universitas Muhammadiyah Riau,” J. Comput. Sci. Inf. Technol., vol. 1, no. 1, pp. 28–35, 2020.

R. A. Pratama and A. Rosyidie, “Social Impacts of Tourism Industry Caused By Agricultural Land Use Change in Tourism Infrastructure Development in Ubud Region, Gianyar Regency, Province of Bali, Indonesia,” ASEAN J. Hosp. Tour., vol. 15, no. 1, p. 12, 2017, doi: 10.5614/ajht.2017.15.1.3.

S. Ibnou-Laaroussi, H. Rjoub, and W. K. Wong, “Sustainability of green tourism among international tourists and its influence on the achievement of green environment: Evidence from North Cyprus,” Sustain., vol. 12, no. 14, pp. 1–24, 2020, doi: 10.3390/su12145698.

R. K. Mishra, S. Urolagin, J. A. A. Jothi, N. Nawaz, and H. Ramkissoon, “Machine Learning based Forecasting Systems for Worldwide International Tourists Arrival,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 11, pp. 55–64, 2021, doi: 10.14569/IJACSA.2021.0121107.

M. Yamin, A. Darmawan, and S. Rosyadi, “Analysis of Indonesian Tourism Potentials Through the Sustainable Tourism Perspective in the New Normal Era,” J. Hub. Int., vol. 10, no. 1, pp. 44–58, 2021, doi: 10.18196/jhi.v10i1.10500.

Z. Yamguchi and G. Quetelet, “A Comparative Study of Post-Marriage Nationality of Women in Legal Systems of Different Countries,” Int. J. Sos. Sci. Res. Rev., vol. 3, no. 3, pp. 1–8, 2020, [Online]. Available:

M. Rifaldo, H. Mukhtar, R. M. Taufiq, and Y. Rizki, “Peramalan kedatangan wisatawan mancanegara ke indonesia menurut kebangsaan perbulannya menggunakan metode multilayer perceptron,” J. Comput. Sci. Inf. Technol., vol. 2, no. 1, pp. 113–119, 2021.

F. Petropoulos et al., “Forecasting: theory and practice,” Int. J. Forecast., vol. 38, no. 3, pp. 705–871, 2022, doi: 10.1016/j.ijforecast.2021.11.001.

D. C. W. Wu, L. Ji, K. He, and K. F. G. Tso, “Forecasting Tourist Daily Arrivals With A Hybrid Sarima–Lstm Approach,” J. Hosp. Tour. Res., vol. 45, no. 1, pp. 52–67, 2021, doi: 10.1177/1096348020934046.

A. S. Abdullah, B. N. Ruchjana, I. G. N. M. Jaya, and Soemartini, “Comparison of SARIMA and SVM model for rainfall forecasting in Bogor city, Indonesia,” J. Phys. Conf. Ser., vol. 1722, no. 1, 2021, doi: 10.1088/1742-6596/1722/1/012061.

M. Santoso, R. Sutjiadi, and R. Lim, “Indonesian Stock Prediction using Support Vector Machine (SVM),” MATEC Web Conf., vol. 164, pp. 5–9, 2018, doi: 10.1051/matecconf/201816401031.

R. E. Caraka, H. Yasin, and A. W. Basyiruddin, “Peramalan Crude Palm Oil (CPO) Menggunakan Support Vector Regression Kernel Radial Basis,” J. Mat., vol. 7, no. 1, p. 43, 2017, doi: 10.24843/jmat.2017.v07.i01.p81.

F. Fatkhuroji, S. Santosa, and R. A. Pramunendar, “Prediksi Harga Kedelai Lokal Dan Kedelai Impor Dengan Metode Support Vector Machine Berbasis Forward Selection,” J. Teknol. Inf., vol. 15, no. 1, pp. 61–76, 2019, [Online]. Available: http://research.

L. Assaffat, “Peramalan Beban Listrik Bulanan Sektor Industri Menggunakan Support Vector Machine dengan Variasi Fungsi Kernel,” Pros. Semin. Nas. Int. LPPM Unimus, no. July, pp. 1–7, 2011.

T. Kincowati, M. T. Furqon, and B. Rahayudi, “Prediksi Jumlah Kunjungan Wisatawan Mancanegara Ke Indonesia Menggunakan Metode Average-Based Fuzzy Time Series Models,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 6, pp. 5250–5256, 2019.

K. Dewi, P. P. Adikara, and S. Adinugroho, “Prediksi Indeks Harga Konsumen ( IHK ) Kelompok Perumahan , Air , Listrik , Gas Dan Bahan Bakar Menggunakan Metode Support Vector Regression,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3856–3862, 2018.

F. I. Sanjaya and D. Heksaputra, “Prediksi Rerata Harga Beras Tingkat Grosir Indonesia dengan Long Short Term Memory,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 163–174, 2020, doi: 10.35957/jatisi.v7i2.388.

A. S. Chan, “Prediksi Kedatangan Wisatawan Pada Pariwisata Kota Batam Dengan Menggunakan Teknik Knowledge Data Discovery,” J. Ilm. Inform., vol. 6, no. 01, p. 11, 2018, doi: 10.33884/jif.v6i01.432.

R. E. Cahyono, J. P. Sugiono, and S. Tjandra, “Analisis Kinerja Metode Support Vector Regression (SVR) dalam Memprediksi Indeks Harga Konsumen,” JTIM J. Teknol. Inf. dan Multimed., vol. 1, no. 2, pp. 106–116, 2019, doi: 10.35746/jtim.v1i2.22.

Abstract views: 81 , pdf downloads: 64