EKSPLORASI SENTIMEN PENGGUNA X TERHADAP ISU KESEHATAN MENTAL BERBASIS MACHINE LEARNING

Authors

  • Dianda Rifaldi Universitas Riau Indonesia
  • Tri Stiyo Famuji Universitas Al-Irsyad Cilacap
  • Galih Pramuja Inngam Fanani Universitas 'Aisyiyah Surakarta
  • Fauzan Purma Ramadhan Universitas Riau Indonesia
  • Iriene Putri Mulyadi Universitas Riau Indonesia
  • Vanji Saputra Universitas Riau Indonesia

DOI:

https://doi.org/10.37859/seis.v5i2.9594
Keywords: Mental Health, Sentiment Analysis, Social Media, Multinomial Naive Bayes, X

Abstract

Mental health has become an increasingly relevant topic in the digital era, particularly on social media platforms such as X, which serve as public spaces for expressing opinions and sharing personal experiences. This study aims to analyze public sentiment toward mental health topics on Twitter using the Multinomial Naive Bayes algorithm. Data were collected from tweets containing mental health-related keywords and processed through text cleaning and feature extraction using the TF-IDF method. The classification results showed that the model achieved an accuracy of 71%, with stronger performance in identifying negative sentiment compared to positive sentiment. A WordCloud visualization also revealed the frequent appearance of terms such as “mental,” “health,” “self,” and “disorder,” reflecting the main focus of online discussions. These findings indicate that machine learning-based sentiment analysis is effective in capturing public perceptions of mental health issues on social media. This research is expected to contribute to the development of digital communication strategies and real-time monitoring of psychosocial issues in online spaces.

Downloads

Download data is not yet available.

References

Adhi, M. S., Nafan, M. Z., & Usada, E. (2019). Pengaruh Semantic Expansion pada Naïve Bayes Classifier untuk Analisis Sentimen Tokoh Masyarakat. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 3(2), 141–147. https://doi.org/10.29207/resti.v3i2.901

Agustin, A. V., Sa’adah, F. N., & Umaidah, Y. (2024). Analisis Sentimen Menggunakan Metode Naive Bayes Terhadap Childfree. Dinamik, 29(1), 31–40. https://doi.org/10.35315/dinamik.v29i1.9455

Alzami, F., Udayanti, E. D., Prabowo, D. P., & Megantara, R. A. (2020). Document Preprocessing with TF-IDF to Improve the Polarity Classification Performance of Unstructured Sentiment Analysis. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(3), 235–242. https://doi.org/10.22219/kinetik.v5i3.1066

Borg, A., & Boldt, M. (2020). Using VADER sentiment and SVM for predicting customer response sentiment. Expert Systems with Applications, 162, 113746. https://doi.org/10.1016/j.eswa.2020.113746

Chiny, M., Chihab, M., Lahcen, A. A., Bencharef, O., & Chihab, Y. (2023). Effect of word embedding vector dimensionality on sentiment analysis through short and long texts. IAES International Journal of Artificial Intelligence, 12(2), 823–830. https://doi.org/10.11591/ijai.v12.i2.pp823-830

Farhana, S. (2021). Classification of Academic Performance for University Research Evaluation by Implementing Modified Naive Bayes Algorithm. Procedia Computer Science, 194, 224–228. https://doi.org/10.1016/j.procs.2021.10.077

Fatihah Rahmadayana, & Yuliant Sibaroni. (2021). Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5, 936–942. https://doi.org/10.29207/resti.v5i5.3457

Gabriela, N. H., Siautama, R., Amadea, C. I. A., & Suhartono, D. (2021). Extractive Hotel Review Summarization based on TF/IDF and Adjective-Noun Pairing by Considering Annual Sentiment Trends. Procedia Computer Science, 179(2020), 558–565. https://doi.org/10.1016/j.procs.2021.01.040

Govindasamy, K. A. L., & Palanichamy, N. (2021). Depression detection using machine learning techniques on twitter data. Proceedings - 5th International Conference on Intelligent Computing and Control Systems, ICICCS 2021, Iciccs, 960–966. https://doi.org/10.1109/ICICCS51141.2021.9432203

Hananto, A. D., Erfiana, A. M., Putri, B. L. P., Putri, P. D., & Kurniawan, F. (2023). Algoritma Machine Learning Naïve Bayes pada Analisis Sentimen Kesepakatan Polri dan GNPF-MUI pada Aksi Bela Islam III “212.” SINTA Journal (Science, Technology, and Agricultural), 4(2), 151–160. https://doi.org/10.37638/sinta.4.2.151-160

Juliansen, A., Heriyanto, R. S., Muljono, M. P., Budiputri, C. L., Sagala, Y. D. S., & Octavius, G. S. (2024). Mental health issues and quality of life amongst school-based adolescents in Indonesia. Journal of Medicine, Surgery, and Public Health, 2(October 2023), 100062. https://doi.org/10.1016/j.glmedi.2024.100062

Kholifah, B., Syarif, I., & Badriyah, T. (2020). Mental Disorder Detection via Social Media Mining using Deep Learning. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4, 309–316. https://doi.org/10.22219/kinetik.v5i4.1120

Liang, Y., Liu, L., Ji, Y., Huangfu, L., & Zeng, D. D. (2023). Identifying emotional causes of mental disorders from social media for effective intervention. Information Processing and Management, 60(4). https://doi.org/10.1016/j.ipm.2023.103407

Nabiilah, G. Z., Prasetyo, S. Y., Izdihar, Z. N., & Girsang, A. S. (2023). ScienceDirect ScienceDirect 7th International Conference on Computer Science and Computational Intelligence 2022 BERT base model for toxic comment analysis on BERT base model for toxic comment analysis on Indonesian social media Indonesian social media. Procedia Computer Science, 216(2022), 714–721. https://doi.org/10.1016/j.procs.2022.12.188

Nayoga, B. P., Adipradana, R., Suryadi, R., & Suhartono, D. (2021). Hoax Analyzer for Indonesian News Using Deep Learning Models. Procedia Computer Science, 179(2020), 704–712. https://doi.org/10.1016/j.procs.2021.01.059

Neogi, A. S., Garg, K. A., Mishra, R. K., & Dwivedi, Y. K. (2021). Sentiment analysis and classification of Indian farmers’ protest using twitter data. International Journal of Information Management Data Insights, 1(2), 100019. https://doi.org/10.1016/j.jjimei.2021.100019

Rifaldi, D., Fadlil, A., & Herman. (2023). Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet Mental Health. Jurnal Pendidikan Teknologi Informasi, 3(2), 161–171.

Rifaldi, D., Fadlil, A., & Herman. (2024). Implementation of Word Trends Using a Machine Learning Approach with TF-IDF and Latent Dirichlet Allocation. International Journal on Informatics Visualization, 8(4), 2297–2304. https://doi.org/10.62527/joiv.8.4.2452

Uthirapathy, S. E., & Sandanam, D. (2022). Topic Modelling and Opinion Analysis on Climate Change Twitter Data Using LDA and BERT Model. Procedia Computer Science, 218(2022), 908–917. https://doi.org/10.1016/j.procs.2023.01.071

Wilson, C., & McDarby, V. (2023). Social Media and Mental Health. Clinical child psychology and psychiatry, 28(1), 157–160. https://doi.org/10.1177/13591045221144926

Xu, Z., Ye, Z., Ye, H., Zhu, L., Lu, K., Quan, H., Wang, J., Gu, S., Zhang, S., & Zhang, G. (2024). Public Opinion Evolution Law and Sentiment Analysis of Campus Online Public Opinion Events. Journal of Advanced Computational Intelligence and Intelligent Informatics, 28(4), 990–1004. https://doi.org/10.20965/jaciii.2024.p0990

Downloads

Published

2025-08-21 — Updated on 2025-10-15

Versions

How to Cite

Rifaldi, D. ., Famuji, T. S. ., Fanani, G. P. I. ., Ramadhan, F. P. ., Mulyadi, I. P. ., & Saputra, V. . (2025). EKSPLORASI SENTIMEN PENGGUNA X TERHADAP ISU KESEHATAN MENTAL BERBASIS MACHINE LEARNING. Journal of Software Engineering and Information System (SEIS), 5(2), 84–89. https://doi.org/10.37859/seis.v5i2.9594 (Original work published August 21, 2025)

Issue

Section

Articles