PEMODELAN MACHINE LEARNING DENGAN ALGORITMA RANDOM FOREST DALAM MEMPREDIKSI RISIKO STROKE

Authors

  • Doni Arman Universitas Riau
  • Nurul Sakhila Indayana Universitas Riau
  • Finanta Okmayura Universitas Riau
  • Suci Putri Anjani Universitas Riau
  • Fitri Nur Dayani Universitas Riau
  • Muhammad Farhan Universitas Riau
  • Ariya Faturrahman Universitas Riau

DOI:

https://doi.org/10.37859/seis.v5i2.9590
Keywords: Machine Learning, Random Forest, Stroke

Abstract

Stroke is one of the diseases that significantly affects health and economy, becoming the second most common cause of death in the world after coronary heart disease. Based on data from the World Health Organization (WHO), stroke is ranked second as the leading cause of death in the world after ischemic heart disease. In 2019, stroke was responsible for around 11% of total global deaths. One important way to reduce the death rate from stroke is to make prevention efforts through early prediction. Machine learning methods, especially Random Forest, are used in this study to predict the risk of stroke. The data used comes from a public dataset that includes age, gender, blood pressure, blood sugar, smoking status, and other medical history. The research process includes data pre-processing stages (data cleaning, outlier handling, and category coding), model training using the Random Forest algorithm, and model evaluation using a confusion matrix to evaluate accuracy, precision, recall, and F1 score. The evaluation results show an accuracy value of 97.55%, which indicates very good predictive performance so that this model has very good predictive performance.

Downloads

Download data is not yet available.

References

Ary Prandika Siregar, Dwi Priyadi Purba, Jojor Putri Pasaribu, & Khairul Reza Bakara. (2023). Implementasi Algoritma Random Forest Dalam Klasifikasi Diagnosis Penyakit Stroke. Jurnal Penelitian Rumpun Ilmu Teknik, 2(4), 155–164. https://doi.org/10.55606/juprit.v2i4.3039

Ashfania, G. A. M., Prahasto, T., Widodo, A., & Warsokusumo, T. (2023). Penggunaan Algoritma Random Forest untuk Klasifikasi Berbasis Kinerja Efisiensi Energi pada Sistem Pembangkit Daya. ROTASI, 24(3), 14-21.

Fadli, M., & Saputra, R. A. (n.d.). KLASIFIKASI DAN EVALUASI PERFORMA MODEL RANDOM FOREST UNTUK PREDIKSI STROKE Classification And Evaluation Of Performance Models Random Forest For Stroke Prediction. 12. http://jurnal.umt.ac.id/index.php/jt/index

Pandhita, G., Samino, & Bustami, M. (2017). Skor ICH-GS untuk prediksi prognosis pasien stroke perdarahan intraserebral di Rumah Sakit Islam Jakarta Pondok Kopi. CDK, 44(12), 847–850.

Patmawati. (2023). https://bufnets.tech https://doi.org/10.59688/bufnets BULLETIN OF NETWORK ENGINEER AND PREDIKSI PENYAKIT STROKE MENGGUNAKAN SUPPORT VECTOR MACHINE (SVM) STROKE PREDICTION USING A SUPPORT VECTOR MACHINE (SVM). https://doi.org/10.59688/bufnets

Putri, M. (2024). Prediksi Penyakit Stroke Menggunakan Machine Learning Dengan Algoritma Random Forest. Jurnal Infomedia: Teknik Informatika.

Ristyawan, A., Nugroho, A., & Amarya, T. K. (2025). Optimasi Preprocessing Model Random Forest Untuk Prediksi Stroke. 12(1), 29–44.

Teknika, J., & Ria Supriyatna, A. (n.d.). Teknika 17 (1): 163-172 Prediksi Penyakit Diabetes Menggunakan Algoritma Random Forest. IJCCS, x, No.x, 1–5.

Wahyu Setiyo Aji, P. (2023). Stroke Disease Prediction Using Random Forest Method [ Prediksi Penyakit Stroke Menggunakan Metode Random Forest ]

Wahyu Setiyo Aji, P., & Dijaya, R. (2023). Prediksi penyakit stroke menggunakan metode Random Forest. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 4(4), 916–924.

World Health Organization. (2020). The top 10 causes of death. Diakses pada 28 Juni 2025 dari: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

Downloads

Published

2025-08-20 — Updated on 2025-10-15

Versions

How to Cite

Arman, D., Indayana, N. S., Okmayura, F., Anjani, S. P., Dayani, F. N., Farhan, M., & Faturrahman, A. (2025). PEMODELAN MACHINE LEARNING DENGAN ALGORITMA RANDOM FOREST DALAM MEMPREDIKSI RISIKO STROKE . Journal of Software Engineering and Information System (SEIS), 5(2), 59–67. https://doi.org/10.37859/seis.v5i2.9590 (Original work published August 20, 2025)

Issue

Section

Articles