MODEL KLASIFIKASI JARAK MANHATTAN PADA PENGENALAN CITRA SISTEM BAHASA ISYARAT BAHASA INDONESIA

Authors

  • Alfa Rado Andre Yusa Saka Tory Universitas Duta Bangsa
  • Afu Ichsan Pradana Universitas Duta Bangsa
  • Joni Maulindar Universitas Duta Bangsa

DOI:

https://doi.org/10.37859/seis.v5i2.9466
Keywords: Sign Language, SIBI, Image recognition, Manhattan

Abstract

This study aims to design and implement an image recognition system for Sistem Isyarat Bahasa Indonesia (SIBI) by applying the Manhattan distance classification method. Sign language serves as a vital means of visual communication for individuals with hearing impairments and disabilities. However, public understanding of this language remains limited, often leading to ineffective communication between hearing and non-hearing communities. Therefore, an assistive system capable of accurately recognizing sign language is highly needed. The Manhattan method was selected due to its simplicity and efficiency in calculating distances between data points. The dataset used in this study was obtained from the Kaggle website, consisting of 130 training images and 130 testing images, each representing 26 alphabet letters in the SIBI system. All images underwent initial preprocessing using Jupyter Notebook, including resizing, background removal, and conversion to grayscale to facilitate feature extraction. The grayscale images were then transformed into histograms and normalized to maintain a consistent value scale. The classification process was carried out by computing the Manhattan distance between the test and training image histograms. The system was developed using MATLAB R2015a, featuring a user interface that displays classification results directly. The test results showed that out of 130 test images, 104 were accurately recognized, achieving an accuracy rate of 80%. These findings indicate that the Manhattan method is effective for use in image-based sign language recognition systems. The developed system is expected to serve as an inclusive and educational tool to enhance communication between the hearing-impaired community and the general public. Further development may involve integrating additional methods and expanding the dataset.

Downloads

Download data is not yet available.

References

Budiman, S. N., Lestanti, S., Yuana, H., & Awwalin, B. N. (2023). SIBI (Sistem Bahasa Isyarat Indonesia) berbasis Machine Learning dan Computer Vision untuk Membantu Komunikasi Tuna Rungu dan Tuna Wicara. Jurnal Teknologi Dan Manajemen Informatika, 9(2), 119–128. https://doi.org/10.26905/jtmi.v9i2.10993

Daniels, S., Suciati, N., & Fathichah, C. (2021). Indonesian Sign Language Recognition using YOLO Method. IOP Conference Series: Materials Science and Engineering, 1077(1), 012029. https://doi.org/10.1088/1757-899x/1077/1/012029

Dhewa, O. A., Yuliana Utama, S., Nasuha, A., Gunawan, T. S., Nugraha, G., & Pratama, P. (2024). Real-Time Classification Improvement of Indonesian Sign System Letters (SIBI) Using K-Nearest Neighbor Algorithm. Science & Technology Asia, 29(3). https://doi.org/10.14456/scitechasia.2024.49

Fitriani, L., Kurniadi, D., & Rajab, I. S. (2025). Implementation of Machine Learning Model to Detect Sign Language Movement in SIBI Learning Media. Teknika, 14(1), 57–65. https://doi.org/10.34148/teknika.v14i1.1159

Hassan, M. M., Hussein, H. I., Eesa, A. S., & Mstafa, R. J. (2021). Face recognition based on gabor feature extraction followed by fastica and lda. Computers, Materials and Continua, 68(2), 1637–1659. https://doi.org/10.32604/cmc.2021.016467

Kurniawan, R., & Arie Wijaya, Y. (2025). Journal of Artificial Intelligence and Engineering Applications YOLOv8 Algorithm to Improve the Sign Language Letter Detection System Model (Vol. 4, Issue 2).

L. Galib, S., S. Tahir, F., & A. Abdulrahman, A. (2021). Detection Face Parts in Image Using Neural Network Based on MATLAB. Engineering and Technology Journal, 39(1B), 159–164. https://doi.org/10.30684/etj.v39i1b.1944

Permana, D., & Sutopo, J. (2023). APLIKASI PENGENALAN ABJAD SISTEM ISYARAT BAHASA INDONESIA (SIBI) DENGAN ALGORITMA YOLOv5 MOBILE APPLICATION ALPHABET RECOGNITION OF INDONESIAN LANGUAGE SIGN SYSTEM (SIBI) USING YOLOv5 ALGORITHM. Jurnal SimanteC, 11(2), 231–240.

Rudy Asrianto, & Araafy2. (2022). PERANCANGAN SISTEM PAKAR UNTUK IDENTIFIKASI KERUSAKAN HARDWARE DAN SOFTWARE PADA SMARTPHONE DENGAN MENGGUNAKAN METODE FORWARD CHAINING. Jurnal Software Engineering and Information Systems (SEIS), 2.

Saleh, A., F K Sibero, A., & H G Manurung, I. (2021). Pengenalan Tanaman Herbal Menggunakan Algoritma Learning Vector Quantization Dan Manhattan Distance. Jurnal TEKESNOS, 3(2), 271–276.

Septiarini, A., Hamdani, H., Sauri, M. S., & Widians, J. A. (2022). Image processing for maturity classification of tomato using otsu and manhattan distance methods. Jurnal Informatika, 16(3), 112. https://doi.org/10.26555/jifo.v16i1.a21985

Sholawati, M., Auliasari, K., & Ariwibisono, FX. (2022). Pengembangan Aplikasi Pengenalan Bahasa Isyarat Abjad Sibi Menggunakan Metode Convolutional Neural Network (Cnn). JATI (Jurnal Mahasiswa Teknik Informatika), 6(1), 134–144. https://doi.org/10.36040/jati.v6i1.4507

Soltani, O., & Benabdelkader, S. (2022). Euclidean distance versus Manhattan distance for skin detection using the SFA database. In Int. J. Biometrics (Vol. 14, Issue 1).

Sunardi, Abdul Fadlil, & Novi Tristanti. (2022). The Application of The Manhattan Method to Human Face Recognition. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(6), 939–944. https://doi.org/10.29207/resti.v6i6.4265

Sunardi, Fadlil, A., & Tristanti, N. (2023). Comparative analysis of euclidean, manhattan, canberra, and squared chord methods in face recognition. Revue d’Intelligence Artificielle, 37(3), 593–599. https://doi.org/10.18280/ria.370308

Downloads

Published

2025-08-20 — Updated on 2025-10-15

Versions

How to Cite

Tory, A. R. A. Y. S. ., Pradana, A. I. ., & Maulindar, J. . (2025). MODEL KLASIFIKASI JARAK MANHATTAN PADA PENGENALAN CITRA SISTEM BAHASA ISYARAT BAHASA INDONESIA. Journal of Software Engineering and Information System (SEIS), 5(2), 35–40. https://doi.org/10.37859/seis.v5i2.9466 (Original work published August 20, 2025)

Issue

Section

Articles