OPTIMASI KNN DENGAN PSO UNTUK KLASIFIKASI KASUS HUKUM DI AUSTRALIA MENGGUNAKAN N-GRAM

Authors

  • Karan Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Muhammadiyah Riau
  • M Alidin Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Muhammadiyah Riau
  • Rafi Fadilla Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Muhammadiyah Riau

DOI:

https://doi.org/10.37859/seis.v5i1.8644
Keywords: kkn, pso, n-gram, tf-idf, legal classification

Abstract

This study aims to improve the accuracy of legal case classification in Australia by integrating the K-Nearest Neighbors (KNN) algorithm optimized using Particle Swarm Optimization (PSO) and N-Gram-based text representation. The dataset consists of 15,263 legal documents collected from the Federal Court of Australia (FCA) with an 80:20 data split for training and testing. The classification process is carried out by applying TF-IDF weighting and a combination of N-Gram (unigrams, bigrams, trigrams) to enrich the data representation. The PSO optimization results show an optimal K value of 9, with a testing accuracy reaching 96%. The evaluation of the model performance shows a precision value of 0.95, a recall of 0.96, and an F1-Score of 0.94. These results indicate that the combination of KNN, PSO, and N-Gram is able to significantly improve the performance of legal document classification, especially in the Cited case category. However, the weakness of the model in the Not Cited category indicates the need to develop a method to handle data imbalance in order to improve model generalization.

Downloads

Download data is not yet available.

References

A. K. Jailani Tanjung, H. Purwadi, and , Hartiwiningsih, “Paradigma Hakim Dalam Memutuskan Perkara Pidana Di Indonesia,” J. Huk. dan Pembang. Ekon., vol. 7, no. 1, p. 39, 2019, doi: 10.20961/hpe.v7i1.29178.

G. Dlamini, Z. Kholmatova, A. Kruglov, G. Succi, H. Tarasau, and A. Valeev, “Meta-analytical Comparison Of SVM and KNN for Text Classification,” Int. Conf. "Nonlinearity, Inf. Robot. NIR, 2021, doi: 10.1109/NIR52917.2021.9666133.

J. González-González, F. de Arriba-Pérez, S. García-Méndez, A. Busto-Castiñeira, and F. J. González-Castaño, “Automatic explanation of the classification of Spanish legal judgments in jurisdiction-dependent law categories with tree estimators,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 7, 2023, doi: 10.1016/j.jksuci.2023.101634.

R. K. Halder, M. N. Uddin, M. A. Uddin, S. Aryal, and A. Khraisat, “Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications,” J. Big Data, vol. 11, no. 1, 2024, doi: 10.1186/s40537-024-00973-y.

A. K. Iman, E. Iman, H. Ujianto, F. Sains, and U. T. Yogyakarta, “Analisis Sentimen Pemindahan Ibu Kota Indonesia Menggunakan K-Nearest Neighbor Sentiment Analysis of the Relocation of Indonesia ’ s Capital Using K-Nearest Neighbor,” J. Pendidik. dan Teknol. Indones., vol. 4, no. 12, pp. 759–768, 2024.

M. Rizki, A. Hermawan, and D. Avianto, “Optimization of Hyperparameter K in K-Nearest Neighbor Using Particle Swarm Optimization,” JUITA J. Inform., vol. 12, no. 1, p. 71, 2024, doi: 10.30595/juita.v12i1.20688.

S. Bansal, “Klasifikasi Teks Kutipan Hukum,” p. 2021, 2021, [Online]. Available: https://www.kaggle.com/datasets/shivamb/legal-citation-text-classification/data

M. Muharrom, “Komparasi Algoritma Klasifikasi Naive Bayes Dan K-Nearest Neighbors Dalam Analisis Sentimen Terhadap Opini Film Pada Twitter,” J. Inform. Dan Tekonologi Komput., vol. 3, no. 1, pp. 43–50, 2023, doi: 10.55606/jitek.v3i1.1147.

A. Firdaus, “Aplikasi Algoritma K-Nearest Neighbor pada Analisis Sentimen Omicron Covid-19,” J. Ris. Stat., pp. 85–92, 2022, doi: 10.29313/jrs.v2i2.1148.

G. Putra, A. Brahmantha, E. Utami, and A. Yaqin, “Klasifikasi Genre Anime Berdasarkan Sinopsis Menggunakan Algoritma K-Nearest Neighbors,” J. Manaj. Inform. Sist. Inf. , vol. 7, no. 1, pp. 15–24, 2024.

S. N. Yanti, Yuhandri, and Sumijan, “Jurnal KomtekInfo Implementasi K-Nearest Neighbor Berbasis Particle Swarm,” J. KomtekInfo, vol. 11, no. 4, pp. 371–379, 2024, doi: 10.35134/komtekinfo.v11i4.586.

M. A. Satriawan and W. Widhiarso, “Klasifikasi Pengenalan Wajah Untuk Mengetahui Jenis Kelamin Menggunakan Metode Convolutional Neural Network,” J. Algoritm., vol. 4, no. 1, pp. 43–52, 2023, doi: 10.35957/algoritme.xxxx.

R. Riskawati, F. Fatihanursari, I. Iin, and A. Rizki Rinaldi, “Penerapan Metode Naïve Bayes Classifier Pada Analisis Sentimen Aplikasi Gopay,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 346–353, 2024, doi: 10.36040/jati.v8i1.8699.

S. Agustian et al., “Jurnal Computer Science and Information Technology ( CoSciTech ) Pengaruh Agregasi Data pada Klasifikasi Sentimen untuk Dataset Terbatas Menggunakan SGD Effect of Data Aggregation on Sentiment Classification for Limited Datasets Using SGD Classifier,” J. Comput. Sci. Inf. Technol., vol. 5, no. 3, pp. 626–634, 2024.

N. Knn, “Analisa Sentimen Pada Media Sosial ‘ X ’ Pencarian Keyword ChatGPT Menggunakan Algoritma K-Nearest Abstrak,” vol. 5, no. 3, pp. 3291–3305, 2024.

I. Moeslem et al., “Deep Learning Dengan Teknik Early Stopping Untuk Mendeteksi Deep Learning With Early Stopping Technique For Malware Detection On Iot Devices,” J. Teknol. Inf. dan Ilmu Komput., vol. 12, no. 1, pp. 21–30, 2025, doi: 10.25126/jtiik.2025128267.

Downloads

Published

2025-03-15

How to Cite

Karan, M Alidin, & Rafi Fadilla. (2025). OPTIMASI KNN DENGAN PSO UNTUK KLASIFIKASI KASUS HUKUM DI AUSTRALIA MENGGUNAKAN N-GRAM. Journal of Software Engineering and Information System (SEIS), 5(1), 26–34. https://doi.org/10.37859/seis.v5i1.8644

Issue

Section

Articles