ANALISIS KESUBURAN PERTANIAN MELALUI IRIGASI DENGAN MENGGUNAKAN METODE K-MEANS CLUSTERING

  • Harun Mukhtar Fakultas Ilmu Komputer, Universitas Muhammadiyah Riau
  • Trimaiyuza Maulina Syafutri Fakultas Ilmu Komputer, Universitas Muhammadiyah Riau
  • Rayhan Aulia Rahman Fakultas Ilmu Komputer, Universitas Muhammadiyah Riau
  • Afyuadri Putra Fakultas Ilmu Komputer, Universitas Muhammadiyah Riau
  • Rizka Hafsari Fakultas Ilmu Komputer, Universitas Muhammadiyah Riau
Keywords: Agriculture, K-means, Clustering

Abstract

Indonesia is an agricultural country where the majority of its population makes a living from agriculture. The agricultural sector is a very important sector for economic development in an agricultural country like Indonesia. Poor irrigation facilities greatly affect the results of the agricultural sector. Crop quality is based on many factors such as the characteristics of the irrigation process, including the amount of air and irrigation time. Overwatering irrigation can cause air wastage, soil freezing disease, yellowing of plant leaves, wilting of plant leaves, and many other problems. K-Means clustering is a method used to group data into one or more groups or clusters. The advantages of the K-Means algorithm are that it is easy and simple to implement, scalability, speed in convergence, and the ability to adapt to sparse data. K-Means to group agricultural land based on soil fertility and rainfall data, found that this grouping can help in more efficient irrigation planning. The clustering results show that agricultural land can be divided into three main clusters based on soil fertility and irrigation. Soil fertility is formed into three clusters based on the level of soil fertility using the Kmeans algorithm which can also be effective in helping in the Indonesian agricultural sector. By adding technological elements, the results provided will of course be even better.

Downloads

Download data is not yet available.

References

Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. In Electronics (Switzerland) (Vol. 9, Issue 8, pp. 1–12). MDPI AG. https://doi.org/10.3390/electronics9081295

Arini, E. R. (2023). PENERAPAN K-MEANS CLUSTER DI PROVINSI JAWA TIMUR BERDASARKAN KETAHANAN PANGAN Implementation of K-Means Cluster In EastJava Based on Food Security. In JSNu : Journal of Science Nusantara (Vol. 3, Issue 1).

Banten, K. P., & Rachman, B. (n.d.). KEBIJAKAN SISTEM KELEMBAGAAN PENGELOLAAN IRIGASI: Kasus Provinsi Banten Policy on Institutional System of Irrigation Management: The Case of Banten Province.

Doni, A. F., Negera, Y. D. P., & Maria, O. A. H. (2020). K-Means Clustering Algorithm for Determination of Clustering of Bangkalan Regional Development Potential. Journal of Physics: Conference Series, 1569(2). https://doi.org/10.1088/1742-6596/1569/2/022078

Eka Kusyanti, D. (2017). SISTEM PENDUKUNG KEPUTUSAN PENGELOMPOKAN PEKERJAAN PEMBENAHAN JARINGAN IRIGASI TERSIER DI KABUPATEN MALANG MENGGUNAKAN METODE K-MEANS CLUSTERING. In Jurnal Mahasiswa Teknik Informatika) (Vol. 1, Issue 1).

Ema, N., Ningsih, T., Pardede, A. M. H., & Syahputra, S. (2022). DATA MINING DALAM PENGELOMPOKKAN JUMLAH DATA PRODUKTIVITAS TANAMAN PANGAN MENGGUNAKAN METODE CLUSTRING K-MEANS ( STUDI KASUS : BADAN PUSAT STATISTIK KOTA BINJAI). Jurnal Sistem Informasi Kaputama (JSIK), 6(2).

Febiola, Y. I., Cholissodin, I., & Dewi, C. (2019). Peramalan Hasil Panen Kelapa Sawit Menggunakan Metode Multifactors High Order Fuzzy Time Series yang Dioptimasi dengan K-Means Clustering (Studi Kasus: PT. Sandabi Indah Lestari Kota Bengkulu) (Vol. 3, Issue 12). http://j-ptiik.ub.ac.id

Filintas, A., Gougoulias, N., Kourgialas, N., & Hatzichristou, E. (2023). Management Soil Zones, Irrigation, and Fertigation Effects on Yield and Oil Content of Coriandrum sativum L. Using Precision Agriculture with Fuzzy k-Means Clustering. Sustainability (Switzerland), 15(18). https://doi.org/10.3390/su151813524

Hermaya, A., Karsa, A. N., Hidayat, A. R., & Nur Karsa, A. (2022). Metode Algoritma K-Means Untuk Clustering Data Produk Paling Laku Pada Toko Tono Grosir Plumbon Cirebon. 7(7), 9. https://doi.org/10.36418/syntax

Holzinger, A., Fister, I., Fister, I., Kaul, H. P., & Asseng, S. (2024). Human-Centered AI in Smart Farming: Toward Agriculture 5.0. IEEE Access, 12, 62199–62214. https://doi.org/10.1109/ACCESS.2024.3395532

Kholila, N., Mujiono, M., & Wahyudi, D. (2023). Pemetaan Kondisi Lingkungan Tanam menggunakan K-Means Clustering. JSITIK: Jurnal Sistem Informasi Dan Teknologi Informasi Komputer, 1(2), 137–147. https://doi.org/10.53624/jsitik.v1i2.182

Kumar, K., Pradeepa, M., Mahdal, M., Verma, S., RajaRao, M. V. L. N., & Ramesh, J. V. N. (2023). A Deep Learning Approach for Kidney Disease Recognition and Prediction through Image Processing. Applied Sciences (Switzerland), 13(6). https://doi.org/10.3390/app13063621

Mahendra Awaludin, Y., & Budiman, F. (2023). OPTIMASI ANALISIS KESUBURAN TANAH DENGAN PENDEKATAN SOFT VOTING ENSEMBLE. Jurnal SIMETRIS, 14(2).

Mahmudi, A., Nataly M, S., Kusyanti, D. E., Informatika, T., Malang, I., Raya, J., & Km, K. (n.d.). PENGELOMPOKAN PEKERJAAN PEMBENAHAN JARINGAN IRIGASI TERSIER DI KABUPATEN MALANG MENGGUNAKAN METODE K-MEANS CLUSTERING.

Mauluddin, S., & Suarna, N. (2018). Sistem Pakar Penentuan Jenis Tanah Berdasarkan Kadar PH Untuk Tanaman Palawija Menggunakan Metode K-Means Clustering. 17(1).

Mega, W. (2015). CLUSTERING MENGGUNAKAN METODE K-MEANS UNTUK MENENTUKAN STATUS GIZI BALITA (Vol. 15, Issue 2).

Mekonnen, Y., Namuduri, S., Burton, L., Sarwat, A., & Bhansali, S. (2020). Review—Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture. Journal of The Electrochemical Society, 167(3), 037522. https://doi.org/10.1149/2.0222003jes

Oyelade, J. O., Oladipupo, O., Obagbuwa, I. C., Oyelade, O. J., Oladipupo, O. O., & Obagbuwa, I. C. (2010). Application of k Means Clustering algorithm for prediction of Students Academic Performance Application of k-Means Clustering algorithm for prediction of Students’ Academic Performance. In Article in International Journal of Computer Science and Information Security (Vol. 7, Issue 1). http://sites.google.com/site/ijcsis/

Pathan, M., Patel, N., Yagnik, H., & Shah, M. (2020). Artificial cognition for applications in smart agriculture: A comprehensive review. In Artificial Intelligence in Agriculture (Vol. 4, pp. 81–95). KeAi Communications Co. https://doi.org/10.1016/j.aiia.2020.06.001

Perintis, J., & Km, K. (n.d.). PROSIDING SEMINAR ILMIAH SISTEM INFORMASI DAN TEKNOLOGI INFORMASI Pusat Penelitian dan Pengabdian Pada Masyarakat (P4M) STMIK Dipanegara Makassar.

Perintis Kemerdekaan Km, J., Algoritma K-Means Dalam Memilih Tanah Yang Tepat Untuk Tanaman Padi, P., & Djamro STMIK Dipanegara Makassar, R. A. (2018). PROSIDING SEMINAR ILMIAH SISTEM INFORMASI DAN TEKNOLOGI INFORMASI Pusat Penelitian dan Pengabdian Pada Masyarakat(P4M) STMIK Dipanegara Makassar: Vol. VII (Issue 1).

Pertanian, K., & Indonesia, R. (n.d.). LAPORAN KINERJA KEMENTERIAN PERTANIAN 2023. www.pertanian.go.id

Pranoto, S., Khairudin, M., & Wahyu, E. (2023). Monitoring Smartfarm Using IoT Based for Rice Agriculture. In Future Computer Science Journal (FCSJ) (Vol. 1, Issue 2, pp. 58–67). http://asasijournal.id/index.php/fcsjhttp://doi.org/10.xxxxx/fcsj.xxxx.xxx

Prasetyo, R. A. (n.d.). Mengoptimalkan Irigasi Pertanian Cerdas Melalui Internet of Multimedia Things (IoMT) dengan Deteksi Kebutuhan Air Tanaman Berbasis Deep Learning. https://doi.org/10.13140/RG.2.2.15442.32960

Radana Sembiring, Y., Winanjaya, R., Tunas Bangsa, S., Utara, S., & Jln Sudirman Blok No, I. A. (2021). Implementasi Data Mining Dalam Mengelompokkan Jumlah Penduduk Miskin Berdasarkan Provinsi Menggunakan Algoritma K-Means (Vol. 2, Issue 2). https://www.bps.go.id

Sayari, S., Mahdavi-Meymand, A., & Zounemat-Kermani, M. (2021). Irrigation water infiltration modeling using machine learning. Computers and Electronics in Agriculture, 180. https://doi.org/10.1016/j.compag.2020.105921

Tahta Alfina, Budi Santosa, & Ali Ridho Barakbah. (n.d.). 145483-ID-analisa-perbandingan-metode-hierarchical.

Tri Asmorowati, E., & Sarasanty, D. (2021). Perencanaan Perhitungan AKNOP Pada Daerah Irigasi Mrican Sebagai Upaya Peningkatan Kinerja Irigasi. Cantilever: Jurnal Penelitian Dan Kajian Bidang Teknik Sipil, 10(1), 11–17. https://doi.org/10.35139/cantilever.v10i1.84

Vankayalapati, R., Ghutugade, K. B., Vannapuram, R., & Prasanna, B. P. S. (2021). K-means algorithm for clustering of learners performance levels using machine learning techniques. Revue d’Intelligence Artificielle, 35(1), 99–104. https://doi.org/10.18280/ria.350112

Wahyu Maulana, A., & Rochdiani, D. (n.d.). ANALISIS AGROINDUSTRI TAHU (Studi Kasus Desa Cisadap).

Widiyastuti, E. W. S. (n.d.). PERSEPSI PETANI TERHADAP PENGEMBANGAN SYSTEM OF RICE INTENSIFICATION (SRI) DI KECAMATAN MOGA KABUPATEN PEMALANG.

Xu, D., & Tian, Y. (2015). A Comprehensive Survey of Clustering Algorithms. Annals of Data Science, 2(2), 165–193. https://doi.org/10.1007/s40745-015-0040-1

Xue, D., & Huang, W. (2021). Smart Agriculture Wireless Sensor Routing Protocol and Node Location Algorithm Based on Internet of Things Technology. IEEE Sensors Journal, 21(22), 24967–24973. https://doi.org/10.1109/JSEN.2020.3035651

Published
2024-08-30
How to Cite
Mukhtar, H., Syafutri, T. M., Rahman, R. A., Putra, A., & Hafsari, R. (2024). ANALISIS KESUBURAN PERTANIAN MELALUI IRIGASI DENGAN MENGGUNAKAN METODE K-MEANS CLUSTERING. Journal of Software Engineering and Information System (SEIS), 4(2), 102-107. https://doi.org/10.37859/seis.v4i2.7599
Section
Articles
Abstract views: 314 , PDF downloads: 332