PENERAPAN METODE RULE BASED REASONING DALAM SISTEM PAKAR DETEKSI DINI GANGGUAN KESEHATAN MENTAL PADA MAHASISWA

  • Dita Wahyuni Mahasiswa
  • Doni Winarso Universitas Muhammadiyah Riau
Keywords: Expert System, Rule-Based Reasoning, College Students, Mental Health Disorder

Abstract

College students are a special group who are going through a critical transition period from adolescence to adulthood and are trying to adjust, maintain good grades, plan for the future, and be away from home, so they are at risk of developing Mental Emotional Disorders (GME) such as depression, anxiety, and other psychiatric comorbidities. Based on this, college students who feel indications of mental problems should immediately talk to a psychologist. But in general, the difficulties faced by college students when conducting consultations, for example, the lack of mental health facilities in their environment or on their campus, shy to do the consultation, and the consultation fees. Based on these problems, an early detection process using an expert system is needed to assist college students in recognizing their mental health disorders. The Rule-Based Reasoning method focuses on expert rules that are entered into the system. Based on expert system testing using the Rule-Based Reasoning method on 10 experimental cases, almost all system results are in accordance with the detection made by the expert. Based on this, it is hoped that this system will help detect mental health disorders experienced by college students.

Downloads

Download data is not yet available.

References

[1] D. V. Fakhriyani, “Kesehatan Mental,” 2019. [Online]. Available: https://www.researchgate.net/publication/348819060
[2] E. Akeman et al., “A pragmatic clinical trial examining the impact of a resilience program on college student mental health,” Depression and Anxiety, vol. 37, no. 3, pp. 202–213, Mar. 2020, doi: 10.1002/da.22969.
[3] M. H. Fazel Zarandi, S. Soltanzadeh, A. Mohammadi, and O. Castillo, “Designing a general type-2 fuzzy expert system for diagnosis of depression,” Applied Soft Computing Journal, vol. 80, pp. 329–341, Jul. 2019, doi: 10.1016/j.asoc.2019.03.027.
[4] Kementrian Kesehatan Republik Indonesia, Profil-Kesehatan-indonesia-2019. Jakarta: Kementerian Kesehatan RI, 2019.
[5] U. Hasanah, N. Luthfiatil Fitri, Supardi, and L. PH, “DEPRESI PADA MAHASISWA SELAMA MASA PANDEMI COVID-19,” 2020.
[6] I. Heinen, M. Bullinger, and R. D. Kocalevent, “Perceived stress in first year medical students - associations with personal resources and emotional distress,” BMC Medical Education, vol. 17, no. 1, pp. 1–14, Jan. 2017, doi: 10.1186/s12909-016-0841-8.
[7] S. Mulyani, R. Anggraeni, L. Ph, and M. F. Mubin, “RESPON ANSIETAS MAHASISWA DALAM PEMBELAJARAN DARING SELAMA PANDEMI COVID-19,” 2021. [Online]. Available: http://journal.stikeskendal.ac.id/index.php/Keperawatan
[8] E. Turban, J. E. Aronson, and T.-P. Liang, Decision Support Systems and Intelligent Systems Seventh Edition. New Delhi: Asoke K. Ghosh, 2007.
[9] G. Ayu, D. Sugiharni, D. Gede, and H. Divayana, “Pemanfaatan Metode Forward Chaining Dalam Pengembangan Sistem Pakar Pendiagnosa Kerusakan Televisi Berwarna,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 6, no. 1, 2017.
[10] M. A. Irfandi, A. Romadhony, and S. Saadah, “IMPLEMENTASI SISTEM PAKAR DIAGNOSA PENYAKIT GIGI DAN MULUT MENGGUNAKAN METODE HYBRID CASE-BASED DAN RULE-BASED REASONING,” 2015. doi: 10.21108/indosc.2015.19.
[11] E. Ramadhani, H. R. Pratama, and E. G. Wahyuni, “Web-based expert system to determine digital forensics tool using rule-based reasoning approach,” in Journal of Physics: Conference Series, Jun. 2021, vol. 1918, no. 4. doi: 10.1088/1742-6596/1918/4/042003.
[12] A. E. Damayanti, “SISTEM PAKAR UNTUK DETEKSI DINI TINGKAT DEPRESI MAHASISWA MENGGUNAKAN METODE MODIFIED K-NEAREST NEIGHBOR,” UNIVERSITAS BRAWIJAYA, Malang, 2021.
[13] R. Raenida and Z. Zukhri, “Sistem Pakar Diagnosis Dini Penyakit Katarak Menggunakan Metode Rule Based Reasoning,” Seminar Nasional Informatika Medis, 2019.
[14] A. A. Al-Hajji, F. M. AlSuhaibani, and N. S. AlHarbi, “An Online Expert System for Psychiatric Diagnosis,” International Journal of Artificial Intelligence & Applications, vol. 10, no. 02, pp. 59–76, Mar. 2019, doi: 10.5121/ijaia.2019.10206.
[15] C. C. Hsu and C. C. Lin, “Framework and Conceptual Design of Rule Base for Building SWI-Prolog-Based Expert Systems to Diagnose and Treat Anxiety,” in Proceedings - 2020 International Conference on Pervasive Artificial Intelligence, ICPAI 2020, Dec. 2020, pp. 54–57. doi: 10.1109/ICPAI51961.2020.00018.
[16] N. Nurholis, F. Fauziah, and N. D. Natashia, “Perpaduan Metode Certainty Factor dan Forward Chaining untuk Menentukan Tingkat Stres Mahasiswa Tingkat Akhir Berbasis Android,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 5, no. 3, p. 267, Jul. 2021, doi: 10.35870/jtik.v5i3.218.
[17] S. Surorejo and A. Habibie, “Sistem Pakar Menentukan Gaya Belajar Anak dengan Metode Rule Based Reasoning dan Fordward Chaining pada SD Negeri 02 Mereng Kabupaten Pemalang,” 2021. [Online]. Available: www.journal.peradaban.ac.id
[18] D. D. Kurnia, S. Andryana, and A. Gunaryati, “Sistem Pakar Untuk Mendiagnosa Gangguan Kesehatan Mental Menggunakan Algoritma Genetika,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, pp. 2407–4322, 2021, [Online]. Available: http://jurnal.mdp.ac.id
[19] Windarsyah, H. Khatimi, and R. Maulana, “SISTEM PAKAR DIAGNOSA JENIS GANGGUAN JIWA SKIZOFRENIA MENGGUNAKAN KOMBINASI METODE FORWARD CHAINING DAN CERTAINTY FACTOR,” vol. 2, pp. 21–28, 2017.
[20] A. Mirzapour, “A Psychology Expert System to Determine the Level of Stress in Subjects,” European Journal of Medical and Health Sciences, vol. 1, no. 2, Jun. 2019, doi: 10.24018/ejmed.2019.1.2.26.
Published
2022-08-24
How to Cite
Wahyuni, D., & Winarso, D. (2022). PENERAPAN METODE RULE BASED REASONING DALAM SISTEM PAKAR DETEKSI DINI GANGGUAN KESEHATAN MENTAL PADA MAHASISWA. Journal of Software Engineering and Information Systems (SEIS), 2(2), 1-10. Retrieved from https://ejurnal.umri.ac.id/index.php/SEIS/article/view/3991
Abstract views: 89 , PDF downloads: 67