Synthesis of C-dots from Table Sugar and Citric Acid for Heavy Metal Detection

  • Yanto Study Program of Pharmacy, Sekolah Tinggi Ilmu Farmasi Riau
  • Rahma Dona Study Program of Pharmacy, Sekolah Tinggi Ilmu Farmasi Riau
  • Ihsan Ikhtiarudin Study Program of Pharmacy, Sekolah Tinggi Ilmu Farmasi Riau
Keywords: Carbon dots, Synthesis, Detection, Luminescence

Abstract

Heavy metal contamination is one of the problems in pharmaceutical products. Carbon dots are a practical and economical method of heavy metal detection to reduce heavy metal contamination in pharmaceutical products. Carbon dots have been successfully synthesized by microwave irradiation from sugar table doped with urea fertilizer (CD-GU) and citric acid doped with urea fertilizer (CD-AU). The success of the synthesis of carbon dots can be seen from their properties that produce a blue to green luminescence when excited with a 405 nm laser and an orange to red luminescence when excited with a 532 nm laser. When excited with a 405 nm laser, CD-GU produces a strong light blue luminescence, while CD-AU produces a strong green luminescence. CD-GU and CD-AU also exhibit orange luminescence when excited with a 532 nm laser. The intensity of luminescence of carbon dots will decrease when interacting with heavy metals so that it can be applied for heavy metal detection. The results of this study revealed that CD-GU and CD-AU can be used to detect heavy metals.

Downloads

Download data is not yet available.

References

Ansi, V. A., & Renuka, N. K. (2018). Table Sugar Derived Carbon Dot – a Naked Eye Sensor for Toxic Pb2+ Ions. Sensors and Actuators B: Chemical, 264, 67–75. https://doi.org/10.1016/j.snb.2018.02.167
Ansi, V. A., & Renuka, N. K. (2020). Antagonistic Interaction of Pb2+- Al3+ Ion Pair with Sugar Derived Carbon Dots: Visual Monitoring of Al3+ Ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 593, 124632. https://doi.org/10.1016/j.colsurfa.2020.124632
Dachriyanus. (2004). Analisis Struktur Senyawa Organik Secara Spektroskopi. Lembaga Pengembangan Teknologi Informasi dan Komunikasi (LPTIK) Universitas Andalas.
Fong, J. F. Y., Ng, Y. H., & Ng, S. M. (2018). Carbon Dots as a New Class of Light Emitters for Biomedical Diagnostics and Therapeutic Applications. In Fullerens, Graphenes and Nanotubes (pp. 227–295). Elsevier. https://doi.org/10.1016/B978-0-12-813691-1.00007-5
Gayen, B., Palchoudhury, S., & Chowdhury, J. (2019). Carbon Dots: A Mystic Star in the World of Nanoscience. Journal of Nanomaterials, 2019, 1–19. https://doi.org/10.1155/2019/3451307
Gupta, A., Verma, N. C., Khan, S., Tiwari, S., Chaudhary, A., & Nandi, C. K. (2016). Paper Strip Based and Live Cell Ultrasensitive Lead Sensor Using Carbon Dots Synthesized from Biological Media. Sensors and Actuators B: Chemical, 232, 107–114. https://doi.org/10.1016/j.snb.2016.03.110
Liu, X., Liu, J., Zheng, B., Yan, L., Dai, J., Zhuang, Z., Du, J., Guo, Y., & Xiao, D. (2017). N-Doped Carbon Dots: Green and Efficient Synthesis on a Large-Scale and Their Application in Fluorescent pH Sensing. New Journal of Chemistry, 41(19), 10607–10612. https://doi.org/10.1039/C7NJ01889D
Nasir, S., Hussein, M. Z., Zainal, Z., Yusof, N. A., Zobir, S. A. M., & Alibe, I. M. (2019). Potential Valorization of By-product Materials from Oil Palm: A review of Alternative and Sustainable Carbon Sources for Carbon-based Nanomaterials Synthesis. BioResources, 14(1), 2352–2388. https://doi.org/10.15376/biores.14.1.Nasir
Pan, L., Sun, S., Zhang, A., Jiang, K., Zhang, L., Dong, C., Huang, Q., Wu, A., & Lin, H. (2015). Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing. Advanced Materials, 27(47), 7782–7787. https://doi.org/10.1002/adma.201503821
Putro, P. A., & Maddu, A. (2019). Sifat Optik Carbon Dots (C-Dots) dari Daun Bambu Hasil Sintesis Hijau Berbantukan Gelombang Mikro . Wahana Fisika, 4(1), 47–55. https://doi.org/10.17509/wafi.v4i1.15569
Qu, S., Wang, X., Lu, Q., Liu, X., & Wang, L. (2012). A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots. Angewandte Chemie International Edition, 51(49), 12215–12218. https://doi.org/10.1002/anie.201206791
Rodiana, yayah, Masitoh, S., Maulana, H., & Nurhasni, N. (2013). Pengkajian Metode untuk Analisis Total Logam Berat dalam Sedimen Menggunakan Microwave Digestion. Jurnal Ecolab, 7(2), 71–80. https://doi.org/10.20886/jklh.2013.7.2.71-80
Sari, E. P. (2019). Sintesis Carbon dots dari Gula Aren Menggunakan Metode Microwave dengan Urea Sebagai Agen Pasivasi (Skripsi). Universitas Sumatera Utara, Medan.
Seedad, R., khuthinakhun, S., Ratanawimarnwong, N., Jittangprasert, P., Mantim, T., & Songsrirote, K. (2021). Carbon Dots Prepared from Citric Acid and Urea by Microwave-assisted Irradiation as a Turn-on Fluorescent Probe for Allantoin Determination. New Journal of Chemistry, 45(47), 22424–22431. https://doi.org/10.1039/D1NJ03284D
Simões, E. F. C., Leitão, J. M. M., & da Silva, J. C. G. E. (2016). Carbon Dots Prepared from Citric Acid and Urea as Fluorescent Probes for Hypochlorite and Peroxynitrite. Microchimica Acta, 183(5), 1769–1777. https://doi.org/10.1007/s00604-016-1807-6
Song, Y., Zhu, S., Xiang, S., Zhao, X., Zhang, J., Zhang, H., Fu, Y., & Yang, B. (2014). Investigation Into the Fluorescence Quenching Behaviors and Applications of Carbon Dots. Nanoscale, 6(9), 4676. https://doi.org/10.1039/c4nr00029c
Suhartati, T. (2017). Dasar-dasar Spektrofotometri UV-VIS dan Spektrometri Massa untuk Penentuan Struktur Senyawa Organik (1st ed., Vol. 1). Anugrah Utama Raharja.
Sun, X., & Lei, Y. (2017). Fluorescent Carbon Dots and Their Sensing Applications. TrAC Trends in Analytical Chemistry, 89, 163–180. https://doi.org/10.1016/j.trac.2017.02.001
Wang, R., Lu, K.-Q., Tang, Z.-R., & Xu, Y.-J. (2017). Recent Progress in Carbon Quantum Dots: Synthesis, Properties and Applications in Photocatalysis. Journal of Materials Chemistry A, 5(8), 3717–3734. https://doi.org/10.1039/C6TA08660H
Wang, Y., & Hu, A. (2014). Carbon Quantum Dots: Synthesis, Properties and Applications. Journal of Materials Chemistry C, 2(34), 6921–6939. https://doi.org/10.1039/C4TC00988F
Yang, Z., Li, Z., Xu, M., Ma, Y., Zhang, J., Su, Y., Gao, F., Wei, H., & Zhang, L. (2013). Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes. Nano-Micro Letters, 5(4), 247–259. https://doi.org/10.1007/BF03353756
Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Zhang, K., Sun, H., Wang, H., & Yang, B. (2013). Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angewandte Chemie, 125(14), 4045–4049. https://doi.org/https://doi.org/10.1002/ange.201300519
Zou, L., Gu, Z., & Sun, M. (2015). Review of the Application of Quantum Dots in the Heavy-metal Detection. Toxicological & Environmental Chemistry, 97(3–4), 477–490. https://doi.org/10.1080/02772248.2015.1050201
Zu, F., Yan, F., Bai, Z., Xu, J., Wang, Y., Huang, Y., & Zhou, X. (2017). The Quenching of the Fluorescence of Carbon Dots: A Review on Mechanisms and Applications. Microchimica Acta, 184(7), 1899–1914. https://doi.org/10.1007/s00604-017-2318-9
Published
2023-11-30
How to Cite
Yanto, Dona, R., & Ikhtiarudin, I. (2023). Synthesis of C-dots from Table Sugar and Citric Acid for Heavy Metal Detection. Photon: Journal of Natural Sciences and Technology, 14(1), 25-33. https://doi.org/10.37859/jp.v14i1.4214
Section
Chemical Sciences
Abstract views: 46 , PDF downloads: 39