K-Nearest Neighbor Method Based on Forward Selection to Identify Stunting Status in Toddlers

  • Ismi Rizqa Lina Universitas Insan Cita Indonesia
  • Sri Retnowati

Abstract

One of the primary health issues that significantly affects children's growth and development and their future economic potential is stunting in toddlers. To prevent long-term impacts, identification of stunting status needs to be done early so that nutritional and health interventions can be provided effectively.. This research aims to identify the stunting status in toddlers using the K-Nearest Neighbor (K-NN) method. The dataset used includes various attributes of toddlers, such as gender, age, weight, height, weight-for-age index (W/A), z-score of weight-for-age index (W/A), weight-for-height index (W/H), z-score of weight-for-height index (W/H), height-for-age index (H/A), and z-score of height-for-age index (H/A). The data is then divided into training (80%) and testing (20%) sets. The K-NN model is trained with the training data and tested on the testing data. The initial evaluation of the model shows that the K-NN model has an accuracy of 91.20%, precision of 85%, recall of 28%, and an F1 score of 42%, indicating the effectiveness of this method in identifying the stunting status in toddlers, despite some shortcomings. To address these shortcomings, the K-NN model is combined with the forward selection method, which significantly improves the model's performance, achieving an accuracy, precision, recall, and F1 score of 100%. This combination demonstrates that K-NN with forward selection is highly effective and can produce a more accurate and reliable model.

Downloads

Download data is not yet available.

References

[1] R. I. Kemenkes, “Pedoman Gizi Seimbang, Direktorat Jenderal Bina Gizi dan KIA,” 2014, Jakarta, hal.
[2] S. Salsabila, S. Martha, and W. Andani, “KOMPARASI ALGORITMA K-NEAREST NEIGHBOR DENGAN EUCLIDEAN DISTANCE DAN MANHATTAN DISTANCE UNTUK KLASIFIKASI STUNTING BALITA (Studi Kasus: Puskesmas Kelurahan Parit Mayor),” Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 13, no. 2.
[3] K. M. Rajabi, W. Witanti, and R. Yuniarti, “Penerapan Algoritma K-Nearest Neighbor (KNN) Dengan Fitur Relief-F Dalam Penentuan Status Stunting,” Innov. J. Soc. Sci. Res., vol. 3, no. 4, pp. 3555–3568, 2023.
[4] S. Lonang, A. Yudhana, and M. K. Biddinika, “Analisis Komparatif Kinerja Algoritma Machine Learning untuk Deteksi Stunting,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 4, pp. 2109–2117, 2023.
[5] T. Prasetiya, I. Ali, C. L. Rohmat, and O. Nurdiawan, “Klasifikasi Status Stunting Balita Di Desa Slangit Menggunakan Metode K-Nearest Neighbor,” INFORMATICS Educ. Prof. J. Informatics, vol. 5, no. 1, pp. 93–104, 2020.
[6] O. S. Bachri and R. M. H. Bhakti, “Penentuan Status Stunting pada Anak dengan Menggunakan Algoritma KNN,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 3, no. 02, pp. 130–137, 2021.
[7] P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” Hello World J. Ilmu Komput., vol. 2, no. 1, pp. 20–33, 2023.
[8] R. Wahyudi, M. Orisa, and N. Vendyansyah, “Penerapan Algoritma K-Nearest Neighbors Pada Klasifikasi Penentuan Gizi Balita (Studi Kasus Di Posyandu Desa Bluto),” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 2, pp. 750–757, 2021.
[9] I. R. Lina and D. C. Wati, “Klasifikasi Pengeluaran per Kapita di Tiga Provinsi Sulawesi menggunakan K-Nearest Neighbor,” J Stat. J. Ilm. Teor. dan Apl. Stat., vol. 16, no. 1, pp. 395–406, 2023.
[10] S. K. P. Loka and A. Marsal, “Perbandingan Algoritma K-Nearest Neighbor dan Na{\"\i}ve Bayes Classifier untuk Klasifikasi Status Gizi Pada Balita: Comparison Algorithm of K-Nearest Neighbor and Na{\"\i}ve Bayes Classifier for Classifying Nutritional Status in Toddlers,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 8–14, 2023.
[11] D. S. Dwiyanti and M. A. Saptari, “PERANCANGAN SISTEM INFORMASI STATUS GIZI BALITA (STUNTING) di UPTD PUSKESMAS MUARA SATU dan MUARA DUA MENGGUNAKAN METODE NAÏVE BAYES CLASSIFICATION dan K-NEAREST NEIGHBOR BERBASIS WEB,” Sisfo J. Ilm. Sist. Inf., vol. 7, no. 2, pp. 75–81, 2023.
[12] S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” J. Media Inform. Budidarma, vol. 6, no. 1, pp. 49–56, 2022.
[13] J. Zeniarja, K. Widia, and R. R. Sani, “Penerapan algoritma Naive Bayes dan forward selection dalam pengklasifikasian status gizi stunting pada Puskesmas Pandanaran Semarang,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 1–9, 2020.
[14] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach. Learn. Res., vol. 3, no. Mar, pp. 1157–1182, 2003.
[15] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. theory, vol. 13, no. 1, pp. 21–27, 1967.
Published
2024-12-27
How to Cite
Rizqa Lina, I., & Retnowati, S. (2024). K-Nearest Neighbor Method Based on Forward Selection to Identify Stunting Status in Toddlers. Jurnal CoSciTech (Computer Science and Information Technology), 5(3), 695-704. https://doi.org/10.37859/coscitech.v5i3.8061
Abstract views: 56 , PDF downloads: 53