Faktor-Faktor yang mempengaruhi Sikap Mahasiswa dalam Penggunaan Online Learning (Aplikasi Sikuli) di Umri

  • Risnal Diansyah Fakultas Ilmu Komputer
  • Hardian Hamzah
  • Doni Winarso

Abstract

Perkembangan teknologi informasi saat ini semakin pesat, termasuk di dunia Pendidikan. Bentuk pemanfaatan teknologi di dunia pendidikan adalah implementasi e-learning. E-learning adalah suatu sistem atau konsep pendidikan yang memanfaatkan teknologi informasi dalam proses belajar mengajar. Universitas Muhammadiyah Riau (Umri) memanfaatkan teknologi informasi berupa e-learning yang disebut Sikuli. Sistem Informasi Kuliah Online (Sikuli) merupakan E-learning berupa sistem informasi yang dapat membantu berbagai proses akademik mahasiswa dan dosen. Penerapan Sikuli di Umri membutuhkan kajian untuk dapat ditingkatkan kualitasnya. Salah satu kajian yang dapat dilakukan adalah kajian tentang penerimaan (Acceptance) Sikuli oleh mahasiswa. Technology Acceptance Model (TAM) merupakan salah satu model yang dibangun untuk menganalisis dan memahami faktor‐faktor yang mempengaruhi diterimanya penggunaan teknologi komputer. Penelitian ini menggunakan TAM untuk menganalisis tingkat penerimaan pengguna terhadap Sikuli. Adapun respondennya adalah mahasiswa Umri sebanyak 100 mahasiswa. Pengolahan data penelitian menggunakan SPSS dan metode statistical. hasil penelitian ini   menunjukkan bahwa variabel Perceived Usefullnes, Perceived Ease of Use, Attitude Towards Usage, Behavioral Intentionto Use, Social Influence berpengaruh positif dalam dalam penerimaan mahasiswa terhadap Sikuli di Umri.

Downloads

Download data is not yet available.

Author Biography

Risnal Diansyah, Fakultas Ilmu Komputer

IT Governance

References

Sara, K., F.L. Witi, and A. Mude, Implementasi E-Learning Berbasis Moodle di Masa Pandemi Covid 19. Journal Of Administration And Educational Management (Alignment), 2020. 3(2): p. 181-189.

Diansyah, R., E. Arribe, and A.M. Zhakiyah, ANALISIS PENGARUH CUSTOMER SATISFACTION TERHADAP E-SERVICE QUALITY BERDASARKAN E-CUSTOMER LOYALTY PADA WEBSITE TOKOPEDIA. Journal of Software Engineering and Information Systems (SEIS), 2021. 1(1): p. 68-79.

Davis, F.D., Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 1989: p. 319-340.

Silva, P., Davis' technology acceptance model (TAM)(1989). Information seeking behavior and technology adoption: Theories and trends, 2015: p. 205-219.

Davis, F.D., Perceived Usefulness, perceived ease of use and user acceptance of Information Technology, in MIS Quarterly. 1989. p. 319-339.

Davis, F.D., R.P. Bagozzi, and P.R. Warshaw, Extrinsic and intrinsic motivation to use computers in the workplace 1. Journal of applied social psychology, 1992. 22(14): p. 1111-1132.

Al-Emran, M. and T. Teo, Do knowledge acquisition and knowledge sharing really affect e-learning adoption? An empirical study. Education and Information Technologies, 2019.

Jaiyeoba, O.O. and J. Iloanya, E-learning in tertiary institutions in Botswana: apathy to adoption. International Journal of Information and Learning Technology, 2019. 36(2): p. 157-168.

Lee, H., R.-S. Guo, and C. Chen, E-Learning in the Postpandemic Era: A Case Study in Taiwan. IEEE Transactions on Engineering Management, 2021.

Alam, M.M., et al., E-learning services to achieve sustaAlam, M. M., Ahmad, N., Naveed, Q. N., Patel, A., Abohashrh, M., & Khaleel, M. A. (2021). E-learning services to achieve sustainable learning and academic performance: An empirical study. Sustainability (Switzerland), 1. Sustainability (Switzerland), 2021. 13(5): p. 1-20.

Salloum, S.A., et al., Factors affecting the E-learning acceptance: A case study from UAE. Education and Information Technologies, 2019. 24(1): p. 509-530.

Nguyen, H.T.H., et al., Factors Influencing Students’ Intention to Use E-learning System: A Case Study Conducted in Vietnam. International Journal of Emerging Technologies in Learning, 2020. 15(18): p. 165-182.

Wang, L.Y.K., et al., Usability factors predicting continuance of intention to use cloud e-learning application. Heliyon, 2019. 5(6): p. e01788-e01788.

Al-Rahmi, W.M., et al., A model of factors affecting learning performance through the use of social media in Malaysian higher education. Computers and Education, 2018. 121: p. 59-72.

de Souza Rodrigues, M.A., P. Chimenti, and A.R.R. Nogueira, An exploration of eLearning adoption in the educational ecosystem. Vol. 26. 2021: Education and Information Technologies. 585-615.

Alshurafat, H., et al., Factors affecting online accounting education during the COVID-19 pandemic: an integrated perspective of social capital theory, the theory of reasoned action and the technology acceptance model. Education and Information Technologies, 2021. 26(6): p. 6995-7013.

Choi, J.C. and C. Song, Factors explaining why some citizens engage in E-participation, while others do not. Government Information Quarterly, 2020. 37(4): p. 101524-101524.

Tsourela, M. and D.M. Nerantzaki, An internet of things (Iot) acceptance model. assessing consumer’s behavior toward iot products and applications. Future Internet, 2020. 12(11): p. 1-23.

Dang, Y., et al., Examining the impacts of mental workload and task-technology fit on user acceptance of the social media search system. Information Systems Frontiers, 2020. 22(3): p. 697-718.

Virdi, P., A.D. Kalro, and D. Sharma, Consumer acceptance of social recommender systems in India. Online Information Review, 2020. 44(3): p. 723-744.

Castillo, G.M.L., A. Engler, and M. Wollni, Planned behavior and social capital: Understanding farmers’ behavior toward pressurized irrigation technologies. Agricultural Water Management, 2021. 243(September 2020): p. 106524-106524.

Lin, T.C., S.L. Huang, and S.C. Chiang, User resistance to the implementation of information systems: A psychological contract breach perspective. Journal of the Association for Information Systems, 2018. 19(4): p. 306-332.

Published
2022-12-19
Abstract views: 114 , pdf downloads: 27