

p-ISSN: 2723-567X

e-ISSN: 2723-5661

Jurnal Computer Science and Information Technology (CoSciTech)

http://ejurnal.umri.ac.id/index.php/coscitech/index

Sistem monitoring ph dan kelembaban tanah berbasis IoT untuk optimasi pertumbuhan tanaman terong

Sunanto*1, Mitra Unik2, Desti Mualfah3, Zulhendra4

Email: ¹sunanto@umri.ac.id. ²mitraunik@umri.ac.id. ³destimualfah@umri.ac.id

¹²³ Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Muhammadiyah Riau

Diterima: 25 November 2024 | Direvisi: - | Disetujui: 27 Desember 2024 ©2020 Program Studi Teknik Informatika Fakultas Ilmu Komputer, Universitas Muhammadiyah Riau, Indonesia

Abstrak

Pertumbuhan tanaman terong sangat dipengaruhi oleh kondisi lingkungan, terutama pH dan kelembaban tanah. Parameter-parameter ini perlu dipantau secara berkala untuk memastikan kondisi optimal bagi tanaman. Dalam penelitian ini, dikembangkan sebuah sistem monitoring berbasis Internet of Things (IoT) untuk memantau pH dan kelembaban tanah secara real-time. Sistem ini menggunakan sensor pH dan sensor kelembaban yang terhubung dengan mikrokontroler dan dikombinasikan dengan konektivitas IoT untuk mengirim data ke platform cloud. Data yang terkumpul dapat diakses melalui aplikasi mobile, memungkinkan petani atau pengelola lahan untuk memantau kondisi tanah dari jarak jauh. Hasil implementasi menunjukkan bahwa sistem mampu memberikan informasi pH dan kelembaban tanah secara akurat dan real-time, serta memberikan notifikasi apabila parameter tersebut berada di luar rentang optimal. Dengan adanya sistem ini, diharapkan petani dapat melakukan tindakan korektif dengan cepat untuk menjaga kondisi pertumbuhan yang ideal bagi tanaman terong. Penggunaan teknologi IoT dalam sistem monitoring ini juga diharapkan dapat meningkatkan efisiensi dan produktivitas dalam budidaya tanaman terong, serta mengurangi risiko kegagalan panen akibat kondisi tanah yang tidak sesuai.

Kata kunci: Internet of Things (IoT), monitoring tanah, pH tanah, kelembaban tanah, tanaman terong, pertumbuhan tanaman

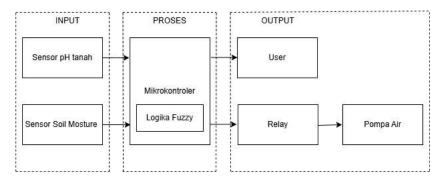
IoT-Based Soil pH and Moisture Monitoring System for Optimizing Eggplant Growth Abstract

The growth of eggplant plants is greatly influenced by environmental conditions, especially pH and soil moisture. These parameters need to be monitored regularly to ensure optimal conditions for the plant. In this study, an Internet of Things (IoT)-based monitoring system was developed to monitor soil pH and moisture in real-time. The system uses pH sensors and humidity sensors connected to microcontrollers and combined with IoT connectivity to send data to a cloud platform. The data collected can be accessed through a mobile application, allowing farmers or land managers to monitor soil conditions remotely. The results of the implementation show that the system is able to provide accurate and real-time information on soil pH and moisture, as well as provide notifications when these parameters are outside the optimal range. With this system, it is hoped that farmers can take corrective action quickly to maintain the condition of.

Keywords: Internet of Things (IoT), soil monitoring, soil pH, soil moisture, eggplant plants, plant growth.

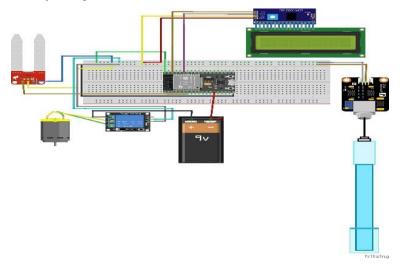
1. PENDAHULUAN

Pertanian merupakan sector yang memiliki peranan penting dalam kelangsungan hidup manusia. Pertanian merupakan salah satu metode guna memenuhi kebutuhan pangan untuk kehidupan manusia peranan sektor pertanian adalah tongak ekonomi pemerintah seperti yang dikemukan oleh [1] dan memberikan kesimpulan negara berkembang pertanian memiliki peran yang cukup besar karena di negara berkembang sektor pertanian merupakan sektor utama dalam pembangunan perekonomian. Sektor pertanian di Indonesia sangat digalakan untuk memenuhi kebutuhan hidup sehari-hari, banyak masyarakatnya yang


menggantungkan hidupnya di sector pertanian. Selain pemerintah Indonesia, pemerintah Malaysia juga mengalakan para petani remaja [2] dimana dampak minat golongan belia terhadap sektor pertanian semakin pudar dan seterusnya menyebabkan penglibatan belia dalam sektor pertanian semakin berkurangan . Tetapi masih banyak yang mengunakan cara manual untuk melakukan pengolahan pada lahan pertanian. Sehingga hasil yang didapatkan kurang maksimal dan juga kurang efisien dalam pengerjaanya. Kemajuan teknologi diera saat ini membuat bermacam - macam hal wajib mengutamakan efesiensi serta kemudahan dalam melaksanakan pekerjaan yang sering dilakukan tiap hari, hal itu menjadikan banyak manusia menghasilkan bermacam jenis teknologi yang otomatis dan dapat membantu memudahkan pekerjaan serta tidak perlu banyak menyita waktu menurut penelitian yang dilakukan oleh [3] smart farming menjadi solusi teknologi pertenian di Indonesia. Perkembangan Teknologi Informasi dan Komunikasi yang terjadi saat ini, berlangsung dengan pesat dan sudah banyak digunakan di berbagai bidang kehidupan seperti dunia industri, bidang kesehatan, pertahanan, pengelolaan pertanian dan yang lainnya. Di bidang pertanian, manfaat dari adanya teknologi informasi dan komunikasi (TIK) sudah banyak memberikan kemudahan dalam kegiatan pengolahan lahan pertanian, menggunakan IoT kendali kukurangan unsur hara dapat diberikan secara automatis [4]. Pemanfaatan adanya teknologi di bidang pertanian ini dapat menjadi faktor penting untuk kegiatan pengembangan di sektor pangan saat ini. Selain dapat berguna untuk mengurangi waktu panen, teknologi yang dimaksud ini bisa memberikan kemudahan yang lainnya. Teknologi ini dikenal dengan Internet of Things (IoT)[5].

Internet of Things (IoT) merupakan paradigma baru dengan fungsionalitas yang membuat pengaturan telekomunikasi tanpa kabel (nirkabel) yang modern dan cepat. Teknologi IoT dapat menghubungkan suatu peralatan tertentu dengan pemanfaatan internet guna menjalankan suatu kegiatan tertentu atau berbagai fungsi. Proses implementasi suatu perangkat Internet of Things (IoT) dibuat melalui adanya embedded system (sistem yang tertanam), dan dapat menghemat daya. Sensor Internet of Things (IoT) memiliki kemampuan untuk memantau penyakit pada tanaman dan aktivitas hama serta kesuburan tanah. Selain itu, ada teknologi nirkabel yang digunakan saat ini untuk dapat memantau cuaca dan juga iklim Kemudian, peralatan berteknologi Internet of Things (IoT) dapat menjadwalkan otomatisasi pemupukan penyemprotan pestisida dan penyiraman [5]. Internet of things (IoT) bekerja dengan cara memanfaatkan suatu siklus pemrograman berbasis embedded system, setiap perintah argument akan menghasilkan suatu interaksi yang terjadi antara mesin dengan mesin dan terhubung otomatis tidak ada campur tangan seseorang dan tidak dibatasi jarak. Konsep IoT sangat baik diterapkan di pertanian dapayt menjadi penghubung antara interaksi antara human, mesin, dan internet, sementara tugas manusia hanya sebagai pengatur dan mengawasi alat tersebut bekerja secara berkala jika membutuhkan keputusan human baru dilakukan selaras dengan penelitian yang dilakukan[6].

Pada sistem monitoring tanaman terong juga memerlukan kebutuhan pH dan kelembaban yang sesuai dengan standard yang ditentukan dan dapat diatasi dengan penerapan sistem internet of things (IoT) seperti penelitian yang dilakukan oleh [7] mengatur jumlah nutrisi pada implementasi pertanian hidroponik. Pemantauan pH dan kelembaban yang masih di lakukan secara manual sehingga para petani sulit dalam mengetahui pH dan kelembaban yang ideal sehingga bibit terong kurang bagus. Hal ini dapat mempengaruhi kualitas terong yang tersedia untuk dikonsumsi dan dapat menyebabkan kualitas buah terong tidak bagus dan kerdil dan juga dengan perubahan suhu yang sering berubah-ubah menyebabkan petani kewalahan dalam menyiapkan kebutuhan air dan pupuk yang cukup pada tanaman terong. Oleh karena itu dibutuhkan penerapan sistem internet of things (IoT) yang dapat melakukan monitoring secara real-time melalui smartpone agar dapat mempermudah petani serta memberikan efisien waktu tanpa harus datang setiap hari ke lahan pertanian untuk melakukan monitoring. Efektifitas penerapan IoT sangat baik dilakukan menurut penelitian yang dilakukan oleh [8]. Berdasarkan penelitian terdahulu maka menerapkan teknologi berbasis internet of things (IoT) dalam bentuk sistem monitoring pada lahan pertanian adalah solusi terbaik untuk memelihara tanaman terong dengan kualitas baik. Variabel yang dilakukan monitoring pada sistem ini adalah pH dan kelembaban tanah mengunakan aplikasi blynkm, penerapan Variabel pH dan kelembab juga diterapkan pada budidaya tanaman perkebunan jambu seperti penelitian yang dilakukan oleh [9] memberikan kesimpulan kelembaban tanama jambu rata-rata tinggi dan memiliki pH asam. Implementasi teknologi IoT dapat diterapkan oleh masyarakat khususnya para petani semoga dapat memberikan wawasan beserta pandangan mengenai pemanfaatan internet of things (IoT), sehingga dapat di manfaatkannya untuk meningkatkan kualitas dan mendapatkan hasil yang maksimal bagi petani. Selain pada bidang pertanian IoT juga dapat diterapkan untuk memantau kebakaran hutan berdasarkan penelitian yang dilakukan oleh [10] bahwa kabakaran hutan dapat dideteksi sejak dini menggunakan teknologi IoT dan embedded system.


2. METODE PENELITIAN

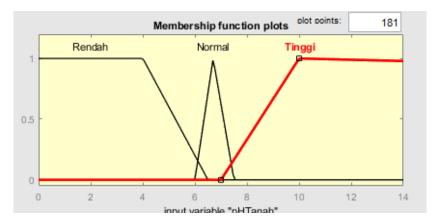
Pada tahapan ini penulis akan membuat flowchart sistem, blok diagram sistem, dan membuat rangkaian alat yang nantinya digunakan untuk membangun sistem monitoring. Menggunakan blok untuk menjelaskan proses sistem berjalan berbasis fuzzy logic dengan inference sugeno. Pada gambar 1 berikut dijelaskan bahwa data dari sensor pH dan sensor soil moisture (Kelembaban Tanah) berupa data pH dan kelembaban tanah yang di proses oleh arduino yang mana data tersebut akan diolah menggunakan fuzzy mamdani untuk memutuskan berapa durasi waktu penyiriman yang akan diberikan oleh sistem. Adapu durasi penyiraman tersebut bergantung terhadap input yang didapat dari sensor pH dan sensor kelembaban.

Gambar 1 Blok Sistem Pemeliharaan Tanaman Terong Berbasis Fuzzy

Pada tahapan ini dilakukan perancangan sistem monitoring yang telah dibuat sebelumnya serta dilakukan dengan memprogram memori Arduino berbasis logika fuzzy yang menggunakan inferensdi fuzzy sugeno sebagai pengatur dalam sistemnya nantik. Data yang diperoleh berupa nilai pH dan kelembaban yang diambil dari sensor yang akan dilakukan pembentukan himpunan fuzzy. Setelah proses tersebut selesai maka akan dilanjutkan ke proses implikasi dan himpunan fuzzy berdasarkan aturan yang telah dibuat. Setelah mendapatkan nilai implikasi, dilakukan komposisi aturan fuzzy dengan fungsi min untuk mencari nilai predikat tiap aturan. Pada gambar 2 akan disajikan gambar perangkat keras dimana sistem pengaturan pH dan kelembaban terong dapat berkerja dengan baik.

Gambar 2 Simulasi Perangkat Keras

Pada tahap ini sistem monitoring pada pembibitan tanaman terong yang dikendalikan oleh Arduino. Untuk mengambil keputusan berdasarkan kondisi tanah. Mikrokonroller ini mengunakan logika fuzzy sugeno dalam menentukan kondisi yang di harapkan. Untuk mengetahui pH dan kelembaban tanah tertentu, digunakan sensor pH dan sensor Soil Moisture sebagai pengukur pH dan kelembaban, melalui tahapan Fuzzifikasi, Inferensi dan Deffuzzyfikasi.

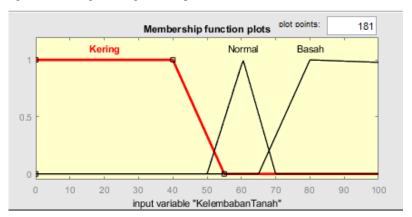

2.2. Fuzzyfikasi

Proses perhitungan fuzzyfikasi yang dilakukan dalam penelitian ini menggunakan rumus kurva segitiga, linear naik dan linear turun. Variabel input yang digunakan adalah pH dan kelembaban tanah.

Tabel 1 Fuzzyfikasi pH

No	Himpunan	Range Nilai					
1	Rendah	0 - 6,5					
2	Sedang	6 – 7,5					
3	Tinggi	7 - 14					

Himpunan Fuzzyfikasi untuk pH tanah dapat ditunjukan pada gambar 3 berikut, dengan menyajikan 3 himpunan fuzzy yang berbeda, yaitu Rendah dengan nilai 0-6.5, normal bernilai 6-7.5 dan tinggi memiliki Rentang 7-14. Pada himpunan pH baik pH tanah maupun range pH yang ada dialam nilai Ph 0-6.4 adalah pH asam atau acid, sementara pH 6.5-7.5 adalah pH netral sedangkan pH yang memiliki rentang nilai 7.6-14 adalah pH basa atau disebut dengan pH alkhali.

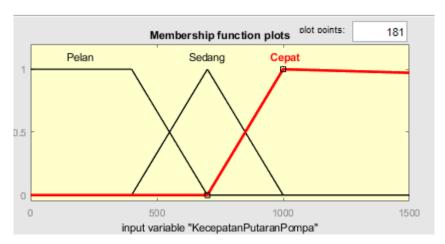

Gambar 3 Fungsi Keanggotaan pH tanah

Fuzzyfikasi kelembaban Adapun fuzzyfikasi pada kelembaban terbagi menjadi tiga bagian yaitu kering (0 %-55 %), normal (50%-70%), basah (65%-100%). Kondisi ini sudah disesuaikan dengan kondisi tanah pada kondisi kering, basah dan normal untuk tanaman terong himpunan fuzzyfikasi input untuk kelembaban disajikan pada tabel 2

Tabel 2 Himpunan Fuzzy Input Kelembaban Tanah

Tabel 2 Thinpunan Tuzzy Input Kelembaban Tanan									
No	Himpunan	Range Nilai							
1	Kering	0 – 55%							
2	Normal	50 – 70%							
3	Basah	65 – 100%							

Dari tabel 2 selanjutnya fungsi keanggotaan input fuzzy kelembaban tanah, yang akan digunakan sebagai indikator penyiraman disajikan pada gambar 4 fungsi keangotaan input kelembaban.


Gambar 4 Fungsi Keanggotaan Input Kelembaban Tanah

Fuzzyfikasi fungsi keanggotaan output pompa air ini berguna untuk penyiraman otomatis dengan sistem fuzzy dapat mengatur PWM pompa dc sesuai dengan kondisi pH dan kelembaban tanah. Sistem putaran motor yang disajikan dalam RPM ini tergantung pada input pH dan kelembaban tanah, digunakan beberapa rule yang kemungkinan besar akan terjadi pada RPM yang akan dikendalikan tersebut. Dalam pembuatan rule atau pernyataan ini, sebenarnya tidak memiliki batasan dalam jumlahnya, semakin banyak rule - rule yang dibuat semakin tepat dan detail kerja sistem ini.

Tabel 3 Himpunan Fuzzy Ouput Putaran Motor

No	Himpunan	Range Nilai					
1	Pelan	0 – 700 Rpm					
2	Sedang	400 – 1000 Rpm					
3	Cepat	700 – 1500 Rpm					

Adapun fungsi keanggotaan variabel *output* kecepatan putaran motor ini bergantung kepada nilai PWM (*Pulse Width Modulation*) yang diberikan oleh kendali *output* mikrokontroler. Pada gambar 5 disajikan fungsi keanggotaan *variable output* putaran motor pompa air tersebut.

Gambar 4 Fungsi Keanggotaan Output Kecepatan Putaran Pompa Air

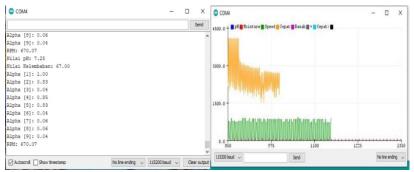
2.3. Inferensi

Inferensi pada Fuzzy Logic merujuk pada proses menarik kesimpulan berbasis aturan logika fuzzy untuk menangani ketidakpastian dan ambiguitas dalam data. Berbeda dengan logika klasik, di mana pernyataan adalah benar atau salah, logika fuzzy memungkinkan nilai kebenaran dalam rentang kontinu antara 0 dan 1. Ini menjadikannya sangat berguna dalam sistem kontrol dan kecerdasan buatan, seperti kontrol suhu, sistem rekomendasi, dan pengenalan pola.

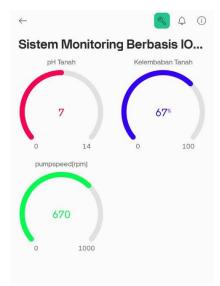
- [R1] IF PH Rendah And Kelembaban Kering Then Pompa Air Putaran Pelan
- [R2] IF PH Normal And Kelembaban Kering Then Pompa Air Putaran Sedang
- [R3] IF PH Tinggi And Kelembaban Kering Then Pompa Air Putaran Pelan
- [R4] IF PH Rendah And Kelembaban Normal Then Pompa Air Putaran Sedang
- [R5] IF PH Normal And Kelembaban Normal Then Pompa Air Putaran Pelan
- [R6] IF PH Tinggi And Kelembaban Normal Then Pompa Air Putaran Sedang
- [R7] IF PH Rendah And Kelembaban Basah Then Pompa Air Putaran Cepat
- [R8] IF PH Normal And Kelembaban Basah Then Pompa Air Putaran Cepat
- [R9] IFPH Tinggi And Kelembaban Basah Then Pompa Air Putaran Cepat
- 2.4. Defuzzifikasi adalah tahap terakhir dalam sistem inferensi fuzzy yang mengubah hasil fuzzy dari aturan logika menjadi nilai tegas (crisp value) untuk diterapkan dalam sistem kontrol. Dalam kasus ini, kita akan mengatur kecepatan putaran pompa air berdasarkan **pH** dan **kelembaban tanah** menggunakan logika fuzzy dengan inferensi Sugeno.

3. HASIL DAN PEMBAHASAN

Sistem ini dibuat berbasis embedded sistem menggunakan input sensor pH dan sensor kelembaban sebagai indikator input sementara indikator output adalah kecepatan putaran pompa air. Beberapa hal yang akan dibahas diantaranya adalah proses uji coba dan hasil uji coba alat yang digunakan. Untuk uji coba alat yang digunakan pada prototype sistem automatis untuk mensimulasikan pH dan Kelembapan pada pembibitan tanaman terong. Kode program yang dibuat di jalankan menggunakan *Arduino IDE*. Metode yang digunakan adalah logika *Fuzzy Sugeno*.


3.1. Sistem Berjalan

Perangkat Ardhuino akan didowloadkan program menggunakan pengetahuan Fuzzy sugeno sebagai penerima data sensor serta menampilkan data melalui ESP32 sebagai pengolah data serta penghubung ke blynk.cloud dengan mengandalkan jaringan dari wifi. Berikut adalah penjelasan program yang akan dimasukan pada ke perangkat tersebut. Program ini menggunakan beberapa library, ada library ESP32, library aplikasi blynk, library Fuzzy, LCD dan library WiFi, informasi akun blynk.cloud seperti usernama, device ID, dan credential di-set sebagai konstanta. Wi-Fi diinisialisasi dengan menggunakan SSID dan password yang telah ditentukan. Koneksi ke blynk.cloud juga diinisialisasi dengan informasi akun yang telah didefinisikan dengan memasukan kode token yang ada di blynk.cloud, pin yang akan digunakan untuk membaca sensor pH, kelembaban tanah yang telah ditentukan, sumber daya blynk.cloud untuk membaca dari sensor pH, kelembaban tanah. Dalam fungsi loop, blynk.cloud di-handle untuk komunikasi, dan kemudian dapat ditambahkan logika lainnya jika diperlukan.


Gambar 5 Perangkat Sensor, MCU dan Media Tanam

Pada implementasi pengujian perangkat sensor yang digunakan masing masing menggunakan satu sensor pH, satu sensor kelembaban, 1 unit Ardhuino uno, 1 unit Esp32. Esp32 digunakan untuk mengirimkan data ke aplikasi blynk sedangkan arhuino uno digunakan untuk memproses data sensor pH dan kelembaban.

Gambar 6 Respon Grafik dan bobot terhadap indikator pH dan kelembaban

Dari gambar 6 dapat disajikan respon nilai masing-masing Rules mulai dari Rule 1 - Rule 9, kemudian menghasilkan putaran motor berbasis Rpm senilai 670,07 Rpm dengan nilai input pH 7,25 dan pembacaan sensor kelembaban adalah 67%. Setiap terjadi pergeseran input sedikit saja maka akan merubah kendali output secara langsung. Dalam sistem ini logika fuzzy dengan inferensi Sugeno dapat bekerja dengan baik selanjutnya dilakukan tahapan pengujian secara menyeluruh terhadap sistem. Pada gambar 7 dapat disajikan tampilan realtime pembacaan indikator pH dan indikator kelembaban.

Gambar 7 Sistem Monitoring Berbasis IoT

3.2. Pengujian Sistem

Berikut ini adalah pengujian teknis berbasis rules dengan memberikan 10 kondisi berbeda pada sistem. Kemudian sistem memberikan respons yang baik dengan melakukan perubahan output dan sesuai terjadi dengan perubahan input secara langsung. Pengujian rules tersebut dibagi menjadi 3 kelompok yaitu renspons motor listrik dengan kondisi pelan, kemudian respons motor listrik dengan kondisi sedang dan respon motor listrik dengan kecepatan cepat.

		Kelembaban Tanah	Rule (Keanggotaan)								Output		
No	Ph Tanah		αlpha1	αlpha2	αlpha3	αlpha4	alpha5	αlpha6	αlpha7	alpha8	αlpha9	Kecepatan (rpm)	Keanggotaan Output
1	7,25	67%	1	0,83	0,04	0,85	0,83	0,04	0,06	0.06	0,04	670,07	Sedang
2	6	52%	0.92	0	0	0.10	0	0	0	0	0	779,67	Sedang
3	7	47%	1	0.67	0	1	0	0	0.14	0	0	727,63	Sedang
4	6	70%	0,92	0	0	0,9	0	0	0,14	0	0	839,23	Cepat
5	7	73%	1	0,67	0	1	0	0	0,23	0,23	0	744,47	Sedang
6	5	63%	0,77	0	0	0,65	0	0	0	0	0	537,4	Sedang
7	4	45%	0,62	0	0	0	0	0	0	0	0	400,00	Pelan
8	4	87%	0,62	0	0	0,62	0	0	0,62	0	0	900,00	Cepat
9	8	48%	0,87	0,87	0,14	0	0	0	0	0	0	861,35	Cepat
10	8	55%	1	1	0,14	0,25	0,25	0,14	0	0	0	796,15	Sedang

Tabel 4 Penguijan Sistem IoT berbasis Fuzzy

Kesimpulan dari pegujian tersebut adalah Tingkat pH: Berkisar dari 4 hingga 8, Tingkat Kelembaban Tanah antara 45% dan 87%. Sedangkan kecepatan motor pompa air bergantung pada 3 kondisi yaitu "Pelan": 400 rpm untuk pH rendah (4) dan kelembaban rendah (45%). "Sedang": Biasanya untuk nilai pH di sekitar netral (5-7) dan tingkat kelembaban sedang. "Cepat": Dicapai pada pH tinggi (4 atau 8) dengan kelembaban tinggi (di atas 70%). Sistem ini menyesuaikan kecepatan motor berdasarkan aturan logika fuzzy yang diaktifkan oleh pH dan kelembaban tanah, di mana tingkat kelembaban yang lebih tinggi dan pH yang seimbang cenderung meningkatkan kecepatan untuk tujuan irigasi atau distribusi air lainnya.

4. KESIMPULAN

Berdasarkan hasil perancangan, implementasi dan pengujian indikator input dan respon ouput maka dapat ditarik kesimpulan penelitian ini yaitu:

- Data dari ke dua sensor yang digunakan telah berhasil ditampilkan pada aplikasi blynk dengan menghubungkan ke internet mengunakan ESP32 dan membuka aplikasi blynk sehingga dapat di monitoring secara online menggunakan komputer dan smartphone.
- Dalam sistem monitoring sudah di tambahkan rekomendasi tingkat pemberian air dengan menggunakan metode fuzzy sugeno, Sistem penyiraman serta kestabilan pH dengan menggunakan logika fuzzy yang dibuat telah berhasil berjalan dengan baik, dimana hasil keluaran dari sistem sesuai dengan rule fuzzy yang telah diprogram pada mikrokontroler. Waktu penyiraman bibit tanaman dapat diatur secara langsung pada aplikasi blynk.cloud.

DAFTAR PUSTAKA

- I. Hidayah, Y. Yulhendri, and N. Susanti, "Peran Sektor Pertanian dalam Perekonomian Negara Maju dan Negara Berkembang; Sebuah Kajian [1] Literatur," J. Salingka Nagari, vol. 1, no. 1, pp. 28–37, 2022, doi: 10.24036/jsn.v1i1.9.
- M. Sofi et al., "Keterlibatan Belia Dalam 'Meremajakan' Sektor Pertanian di Malaysia," Pers. Pelajar, vol. 25, no. 1, pp. 39-49, 2022, doi: [2] 10.17576/personalia.2501.2022.01.
- R. R. Rachmawati, "Smart Farming 4.0 to Build Advanced, Independent, and Modern Indonesian Agriculture Rika Reviza Rachmawati," Forum [3] Penelit. Agro Ekon., vol. 38, no. 2, pp. 137-154, 2020, [Online]. Available: http://dx.doi.org/10.21082/fae.v38n2.2020.137-154.
- [4] N. Effendi, D. Handoko, F. Azim, and F. Farida, "Perancangan sistem pemantauan kelembaban tanah pembibitan kelapa sawit berbasis internet of things," vol. 5, no. 2, pp. 358–366, http://ejurnal.umri.ac.id/index.php/coscitech/index.https://doi.org/10.37859/coscitech.v5i2.7572358. 358-366, 2024,
- N. Nasution, M. Rizal, D. Setiawan, and M. A. Hasan, "IoT Dalam Agrobisnis Studi Kasus: Tanaman Selada Dalam Green House," It J. Res. Dev., [5] vol. 4, no. 2, pp. 86-93, 2019, doi: 10.25299/itjrd.2020.vol4(2).3357.
- I. P. Sari, A. Novita, A.-K. Al-Khowarizmi, F. Ramadhani, and A. Satria, "Pemanfaatan Internet of Things (IoT) pada Bidang Pertanian Menggunakan [6] Arduino UnoR3," Blend Sains J. Tek., vol. 2, no. 4, pp. 337-343, 2024, doi: 10.56211/blendsains.v2i4.505.
- [7] M. Sabil, Sarjon Defit, and Gunadi Widi Nurcahyo, "Penerapan Metode Fuzzy Logic Dalam Sistem Pemantauan Tanaman Berbasis Internet Of Things (Iot) Dengan Arduino," J. CoSciTech (Computer Sci. Inf. Technol., vol. 5, no. 1, pp. 195-204, 2024, doi: 10.37859/coscitech.v5i1.6710.
- A. Ketut Nalendra, M. N. Fuad, D. Wahyudi, N. Kholila, and M. Mujiono, "Effectiveness of the Use of the Internet of Things (IoT) in the Agricultural Sector," *Int. J. Sci. Soc.*, vol. 4, no. 3, pp. 474–478, 2022, doi: 10.54783/ijsoc.v4i3.541. [8]
- [9] H. Karamina, W. Fikrinda, and A. T. Murti, "Kompleksitas pengaruh temperatur dan kelembaban tanah terhadap nilai pH tanah di perkebunan jambu biji varietas Kristal (Psidium guajava I.) Bumiaji, Kota Batu," *Kultivasi*, vol. 16, no. 3, 2018, doi: 10.24198/kltv.v16i3.13225.

 Z. Saryendy and M. Unik, "Jurnal Computer Science and Information Technology (CoSciTech) Development of Internet Of Things (IOT) System
- [10] with LoRa (Long Range) and Solar Energy for Automatic Detection of Forest and Ground Fires," vol. 5, no. 2, pp. 340-347, 2024.