Potensi Kulit Kayu Sebagai Sumber Serat Alam untuk Penguat pada Biokomposit yang Ramah Lingkungan dan Terbarukan: Artikel Review

  • Yoan Perima Universitas Riau
  • Rahmat Iman Mainil Universitas Riau
Keywords: Characterization, Biocomposite, Bark Fiber, Natural Fiber, Composite Reinforced

Abstract

The increasing awareness of environmental issues has influenced the use of eco-friendly materials, one of which is the use of natural fibers in biocomposites. Plant fibers are one of the sources of natural fibers that can be used as reinforcement in polymer matrix composites. Various studies have been conducted on many types of plants to explore sources of natural fibers. One natural fiber that has potential as a reinforcement in biocomposites is fiber from bark. In terms of physical and chemical properties, bark fibers can meet the criteria for reinforcement in polymer matrix composites. The tensile strength of single fibers from various types of bark ranges from 243.94 MPa to 1608 MPa. When compared to other natural fibers, such as ramie fiber with a tensile strength of 408 MPa and areca palm petiole fiber with 104.12 MPa, it can be concluded that bark fibers are equivalent to or even stronger than several other types of natural fibers. This review aims to provide background and information about the potential of bark fibers through several characterizations and tests, allowing for conclusions to be drawn regarding the feasibility of bark fibers as reinforcement in polymer matrix composites.

Downloads

Download data is not yet available.

Author Biographies

Yoan Perima, Universitas Riau

Teknik Mesin Pasca Sarjana

Rahmat Iman Mainil, Universitas Riau

Teknik Mesin Pasca Sarjana

References

V. Amutha and B. Senthilkumar, “Physical, Chemical, Thermal, and Surface Morphological Properties of the Bark Fiber Extracted from Acacia Concinna Plant,” Journal of Natural Fibers, vol. 18, no. 11, pp. 1661–1674, 2021, https://doi.org/10.1080/15440478.2019.1697986.

S. Jothibasu, S. Mohanamurugan, R. Vijay, D. Lenin Singaravelu, A. Vinod, and M. R. Sanjay, “Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications,” Journal of Industrial Textiles, vol. 49, no. 8, pp. 1036–1060, Mar. 2020, https://doi.org/10.1177/1528083718804207.

R. Pandiyarajan, M. Starvin, M. Belsam Jeba Ananth, S. Marimuthu, S. Sabarish, and S. Ponsuriyaprakash, “Experimental investigation of morphological and mechanical properties of SiC-neem-coir fiber reinforced hybrid composite,” Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A, vol. 45, no. 6, pp. 532–542, 2022, https://doi.org/10.1080/02533839.2022.2078414.

P. G. Baskaran, M. Kathiresan, and P. Pandiarajan, “Effect of Alkali-treatment on Structural, Thermal, Tensile Properties of Dichrostachys Cinerea Bark Fiber and Its Composites,” Journal of Natural Fibers, vol. 19, no. 2, pp. 433–449, 2022, https://doi.org/10.1080/15440478.2020.1745123.

R. Girimurugan, R. Pugazhenthi, P. Maheskumar, T. Suresh, and M. Vairavel, “Impact and hardness behaviour of epoxy resin matrix composites reinforced with banana fiber/camellia sinensis particles,” in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 373–377. https://doi.org/10.1016/j.matpr.2020.07.597.

S. dua et al., “Potential of natural fiber based polymeric composites for cleaner automotive component production -a comprehensive review,” Journal of Materials Research and Technology, vol. 25, pp. 1086–1104, Jul. 2023, https://doi.org/10.1016/j.jmrt.2023.06.019.

V. Mahesh, S. Joladarashi, and S. M. Kulkarni, “A comprehensive review on material selection for polymer matrix composites subjected to impact load,” Feb. 01, 2021, China Ordnance Industry Corporation. https://doi.org/10.1016/j.dt.2020.04.002.

H. J. Rao, S. Singh, and P. Janaki Ramulu, “Characterization of a Careya Arborea Bast Fiber as Potential Reinforcement for Light Weight Polymer Biodegradable Composites,” Journal of Natural Fibers, vol. 20, no. 1, pp. 71–87, 2023, https://doi.org/10.1080/15440478.2022.2128147.

J. Holbery and D. Houston, “Natural-Fiber-Reinforced Polymer Composites in Automotive Applications,” 2006.

S. Nayak, S. K. Khuntia, S. D. Mohanty, and J. Mohapatra, “Investigation and Fabrication of Thermo-mechanical Properties of Ceiba Pentandra Bark Fiber/Poly (Vinyl) Alcohol Composites for Automobile Dash Board and Door Panel Applications,” Journal of Natural Fibers, vol. 19, no. 2, pp. 450–462, 2022, https://doi.org/10.1080/15440478.2020.1745124.

F. M. Khan et al., “A Comprehensive Review on Epoxy Biocomposites Based on Natural Fibers and Bio-fillers: Challenges, Recent Developments and Applications,” Aug. 01, 2022, Springer. https://doi.org/10.1007/s42765-022-00143-w.

R. Jeyapragash, V. Srinivasan, and S. Sathiyamurthy, “Mechanical properties of natural fiber/particulate reinforced epoxy composites - A review of the literature,” in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 1223–1227. https://doi.org/10.1016/j.matpr.2019.12.146.

J. Bale, Y. Pell, K. Boimau, B. Bistolen, and D. Rihi, “Tensile characteristics of bio-composite material reinforced with corn skin,” Journal of Engineering and Technological Sciences, vol. 53, no. 5, Oct. 2021, https://doi.org/10.5614/j.eng.technol.sci.2021.53.5.13.

O. Akampumuza, P. M. Wambua, A. Ahmed, W. Li, and X. H. Qin, “Review of the applications of biocomposites in the automotive industry,” Nov. 01, 2017, John Wiley and Sons Inc. https://doi.org/10.1002/pc.23847.

S. Chakravarthy K, M. Madhu S, J. S. Naga Raju, and J. Shariff Md, “Characterization of novel natural cellulosic fiber extracted from the stem of Cissus vitiginea plant,” Int J Biol Macromol, vol. 161, pp. 1358–1370, Oct. 2020, https://doi.org/10.1016/j.ijbiomac.2020.07.230.

F. Gapsari, A. Purnowidodo, S. Hidayatullah, and S. Suteja, “Characterization of Timoho Fiber as a reinforcement in green composite,” Journal of Materials Research and Technology, vol. 13, pp. 1305–1315, Jul. 2021, https://doi.org/10.1016/j.jmrt.2021.05.049.

S. V. Obame, A. D. O. Betené, P. M. Naoh, F. E. Betené, and A. Atangana, “Characterization of the Neuropeltis acuminatas liana fiber treated as composite reinforcement,” Results in Materials, vol. 16, Dec. 2022, https://doi.org/10.1016/j.rinma.2022.100327.

T. Khuntia and S. Biswas, “Characterization of a Novel Natural Filler from Sirisha Bark,” Journal of Natural Fibers, vol. 19, no. 8, pp. 3083–3092, 2022, https://doi.org/10.1080/15440478.2020.1838997.

A. Vinod et al., “Novel Muntingia Calabura bark fiber reinforced green-epoxy composite: A sustainable and green material for cleaner production,” J Clean Prod, vol. 294, Apr. 2021, https://doi.org/10.1016/j.jclepro.2021.126337.

W. A. Wirawan, M. A. Choiron, E. Siswanto, and T. D. Widodo, “Morphology, Structure, and Mechanical Properties of New Natural Cellulose Fiber Reinforcement from Waru (Hibiscus Tiliaceus) Bark,” Journal of Natural Fibers, vol. 19, no. 15, pp. 12385–12397, 2022, https://doi.org/10.1080/15440478.2022.2060402.

J. Tengsuthiwat, V. A, V. R, Y. G. T. G, S. M. Rangappa, and S. Siengchin, “Characterization of novel natural cellulose fiber from Ficus macrocarpa bark for lightweight structural composite application and its effect on chemical treatment,” Heliyon, vol. 10, no. 9, May 2024, https://doi.org/10.1016/j.heliyon.2024.e30442.

K. H. Reddy, R. M. Reddy, M. Ramesh, D. Mohana Krishnudu, B. M. Reddy, and H. R. Rao, “Impact of Alkali Treatment on Characterization of Tapsi (Sterculia Urens) Natural Bark Fiber Reinforced Polymer Composites,” Journal of Natural Fibers, vol. 18, no. 3, pp. 378–389, 2021, https://doi.org/10.1080/15440478.2019.1623747.

K. Ninikas, A. Mitani, D. Koutsianitis, G. Ntalos, H. R. Taghiyari, and A. N. Papadopoulos, “Thermal and mechanical properties of green insulation composites made from cannabis and bark residues,” Journal of Composites Science, vol. 5, no. 5, May 2021, https://doi.org/10.3390/jcs5050132.

R. Ramkumar and P. Saravanan, “Characterization of the Cellulose Fibers Extracted from the Bark of Piliostigma Racemosa,” Journal of Natural Fibers, vol. 19, no. 13, pp. 5101–5115, 2022, https://doi.org/10.1080/15440478.2021.1875356.

P. G. Baskaran, M. Kathiresan, P. Senthamaraikannan, and S. S. Saravanakumar, “Characterization of New Natural Cellulosic Fiber from the Bark of Dichrostachys Cinerea,” Journal of Natural Fibers, vol. 15, no. 1, pp. 62–68, Jan. 2018, https://doi.org/10.1080/15440478.2017.1304314.

P. Senthamaraikannan, S. S. Saravanakumar, M. R. Sanjay, M. Jawaid, and S. Siengchin, “Physico-chemical and thermal properties of untreated and treated Acacia planifrons bark fibers for composite reinforcement,” Mater Lett, vol. 240, pp. 221–224, Apr. 2019, https://doi.org/10.1016/j.matlet.2019.01.024.

R. Kumar et al., “Characterization of New Cellulosic Fiber from the Bark of Acacia nilotica L. Plant,” Journal of Natural Fibers, vol. 19, no. 1, pp. 199–208, 2022, https://doi.org/10.1080/15440478.2020.1738305.

S. Palanisamy et al., “Characterization of Acacia caesia Bark Fibers (ACBFs),” Journal of Natural Fibers, vol. 19, no. 15, pp. 10241–10252, 2022, https://doi.org/10.1080/15440478.2021.1993493.

V. P. Arthanarieswaran, A. Kumaravel, and S. S. Saravanakumar, “Characterization of New Natural Cellulosic Fiber from Acacia leucophloea Bark,” International Journal of Polymer Analysis and Characterization, vol. 20, no. 4, pp. 367–376, May 2015, https://doi.org/10.1080/1023666X.2015.1018737.

P. Senthamaraikannan, S. S. Saravanakumar, V. P. Arthanarieswaran, and P. Sugumaran, “Physico-chemical properties of new cellulosic fibers from the bark of Acacia planifrons,” International Journal of Polymer Analysis and Characterization, vol. 21, no. 3, pp. 207–213, Apr. 2016, https://doi.org/10.1080/1023666X.2016.1133138.

R. Kumar, N. R. J. Hynes, P. Senthamaraikannan, S. Saravanakumar, and M. R. Sanjay, “Physicochemical and Thermal Properties of Ceiba pentandra Bark Fiber,” Journal of Natural Fibers, vol. 15, no. 6, pp. 822–829, Nov. 2018, https://doi.org/10.1080/15440478.2017.1369208.

M. Kathirselvam, A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar, “Assessment of cellulose in bark fibers of Thespesia populnea: Influence of stem maturity on fiber characterization,” Carbohydr Polym, vol. 212, pp. 439–449, May 2019, https://doi.org/10.1016/j.carbpol.2019.02.072.

J. B. Dawit, Y. Regassa, and H. G. Lemu, “Property characterization of acacia tortilis for natural fiber reinforced polymer composite,” Results in Materials, vol. 5, Mar. 2020, https://doi.org/10.1016/j.rinma.2019.100054.

A. Arul Marcel Moshi, D. Ravindran, S. R. Sundara Bharathi, S. R. Padma, S. Indran, and D. Divya, “Characterization of natural cellulosic fiber extracted from Grewia damine flowering plant’s stem,” Int J Biol Macromol, vol. 164, pp. 1246–1255, Dec. 2020, https://doi.org/10.1016/j.ijbiomac.2020.07.225.

P. Manimaran, S. S. Saravanakumar, N. K. Mithun, and P. Senthamaraikannan, “Physicochemical properties of new cellulosic fibers from the bark of Acacia arabica,” International Journal of Polymer Analysis and Characterization, vol. 21, no. 6, pp. 548–553, Aug. 2016, https://doi.org/10.1080/1023666X.2016.1177699.

P. Senthamaraikannan, M. R. Sanjay, K. S. Bhat, N. H. Padmaraj, and M. Jawaid, “Characterization of natural cellulosic fiber from bark of Albizia amara,” Journal of Natural Fibers, vol. 16, no. 8, pp. 1124–1131, Nov. 2019, https://doi.org/10.1080/15440478.2018.1453432.

A. Saravana Kumaar, A. Senthilkumar, T. Sornakumar, S. S. Saravanakumar, and V. P. Arthanariesewaran, “Physicochemical properties of new cellulosic fiber extracted from Carica papaya bark,” Journal of Natural Fibers, vol. 16, no. 2, pp. 175–184, Feb. 2019, https://doi.org/10.1080/15440478.2017.1410514.

W. A. Wirawan, M. A. Choiron, E. Siswanto, and T. D. Widodo, “Morphology, Structure, and Mechanical Properties of New Natural Cellulose Fiber Reinforcement from Waru (Hibiscus Tiliaceus) Bark,” Journal of Natural Fibers, vol. 19, no. 15, pp. 12385–12397, 2022, https://doi.org/10.1080/15440478.2022.2060402.

V. Amutha and B. Senthilkumar, “Physical, Chemical, Thermal, and Surface Morphological Properties of the Bark Fiber Extracted from Acacia Concinna Plant,” Journal of Natural Fibers, vol. 18, no. 11, pp. 1661–1674, 2021, https://doi.org/10.1080/15440478.2019.1697986.

K. Ninikas, A. Mitani, D. Koutsianitis, G. Ntalos, H. R. Taghiyari, and A. N. Papadopoulos, “Thermal and mechanical properties of green insulation composites made from cannabis and bark residues,” Journal of Composites Science, vol. 5, no. 5, May 2021, https://doi.org/10.3390/jcs5050132.

S. Nayak, S. K. Khuntia, S. D. Mohanty, and J. Mohapatra, “Investigation and Fabrication of Thermo-mechanical Properties of Ceiba Pentandra Bark Fiber/Poly (Vinyl) Alcohol Composites for Automobile Dash Board and Door Panel Applications,” Journal of Natural Fibers, vol. 19, no. 2, pp. 450–462, 2022, https://doi.org/10.1080/15440478.2020.1745124.

S. Palanisamy, M. Kalimuthu, C. Santulli, M. Palaniappan, R. Nagarajan, and C. Fragassa, “Tailoring Epoxy Composites with Acacia caesia Bark Fibers: Evaluating the Effects of Fiber Amount and Length on Material Characteristics,” Fibers, vol. 11, no. 7, Jul. 2023, https://doi.org/10.3390/fib11070063.

Published
2024-12-31
How to Cite
Yoan Perima, & Rahmat Iman Mainil. (2024). Potensi Kulit Kayu Sebagai Sumber Serat Alam untuk Penguat pada Biokomposit yang Ramah Lingkungan dan Terbarukan: Artikel Review. Jurnal Surya Teknika, 11(2), 739-748. https://doi.org/10.37859/jst.v11i2.8328
Abstract views: 142 , *.pdf downloads: 109