Proses Kominusi Batubara Berdasarkan Kinetic Energy Impact

  • Rinaldi Rinaldi Sekolah Tinggi Teknologi Pekanbaru
  • Lukman Hakim Nasution Sekolah Tinggi Teknologi Pekanbaru
  • Arden Simeru Sekolah Tinggi Teknologi Pekanbaru
  • Adi Isra Sekolah Tinggi Teknologi Pekanbaru
  • Syafril Syafar Sekolah Tinggi Teknologi Pekanbaru
Keywords: Distribusi, energi, kominusi, impak, batubara

Abstract

Penelitian ini dilakukan untuk menganalisis secara matematik dari distribution function of energy pada proses kominusi berdasarkan eksperimen kinetic energy impact dengan sampel batubara berukuran 10 mm3 menghentam ke dinding penghancur, bukan dihentam seperti crusher model impact pada umumnya. Hasil analisis membuktikan bahwa persamaan  distribution function of energy proses kominusi dapat digunakan untuk memprediksi kebutuhan energy, dan ukuran partikel dari fragmentasi batubara, dan material rapuh lainnya.

Downloads

Download data is not yet available.

References

Marcus Johansson (2017). A Fundamental Model of an Industrial-Scale Jaw Crusher. Minerals Engineering. Volume 105: 69-78.

Gang Ma (2018). The Effect of Different Fracture Mechanisms on Impact Fragmentation of Brittle Heterogeneous Solid. International Journal of Impact Engineering. Volume 113: 132-143.

Fatemeh Saeidi, Mohsen Yahyaei, and Malcolm Powell (2017). Investigating the Effect of Applied Strain Rate in a Single Breakage Event. Minerals Engineering. Volume 100: 211-222.

Horiba Scientific (2016). A Guidebook to Particle Size Analysis. Horiba instruments Inc. 9755. Research Drive Irvine: CA 92618 USA 1-800-4.

Wei-GangShen (2017). Analysis of Impact Induced Rock Fragmentation Using a Discrete Element Approach. International Journal of Rock Mechanics and Mining Sciences. Volume 98: 33-38.

Alan T. Zehnder (2012). Fracture Mechanics. Volume 62: 978- 94-007-2594-2.

Adriana Paluszny (2016). A Direct Fragmentation Method with Weibull Function Distribution of Sizes Based on Finite- and Discrete Element Simulations. International Journal of Solids and Structures. Volume 80: 38-51.

Carina Ulsen (2018). Concrete Aggregates Properties Crushed by Jaw and Impact Secondary Crushing: Journal of Materials Research and Technology, JMRTE 381: 9-18.

James D. Hogan (2015). Dynamic Brittle Fragmentation: Probing the Byproducts of Hypervelocity Impact in Space. Procedia Engineering. Volume 103: 205-212.

X. F. Li (2018). Dynamic Fragmentation of Rock Material: Characteristic Size, Fragment Distribution

and Pulverization Law. Engineering Fracture Mechanics. Volume 199: 739-759.

C. M. Narayanan and B. C. Bhattacharyya (2014). Mechanical Operations for Chemical Engineers.India: Khana publishers.

Juliana Segura-Salazar Gabriel (2017). Mathematical Modeling of a Vertical Shaft Impact Crusherusing the whiten Model. Minerals Engineering. Volume 111: 222-228.

Weihong Li (2019). Reducing Kominusi Over-Grinding of Powder Coatings with Modified GrindingPins in an Air Classifier Mill. Powder Technology. Voume 344: 36-45.

Chunshun Zhang, Giang D. Nguyen and Jayantha Kodikara (2016). An Application of Breakage Mechanics for Predicting Energy–Size Reduction Relationships in Kominusi. Powder Technology.Volume 287: 121-130.

Li, X. F (2018). Dynamic Fragmentation of Rock Material: Characteristic Size, Fragment Distribution and Pulverization Law. Engineering Fracture Mechanics. Volume 199: 39-759.

Tian xing Hou, Qiang XJu and ia-wen Zhou (2015). Size Distribution, Morphology and Fractal Characteristics of Brittle Rock Fragmentations by the Impact Loading Effect. Springer: Acta Mech 226:3623-3637.

Fatemeh Saeidi, Mohsen Yahyaei, and Malcolm Powell (2017). Investigating the Effect of Applied Strain Rate in a Single Breakage Event. Minerals Engineering. Volume 100: 211-222.

Horiba Scientific (2016). A Guidebook to Particle Size Analysis. Horiba instruments Inc. 9755.Research Drive Irvine: CA 92618 USA 1-800-4.

Xuemin Liu (2016). Calculation Model of Coal Kominusi Energy Consumption. Minerals Engineering,Volume 92: 21-27.

Barry A. Wills, James A. Finch FRSC and FCIM, P. Eng. (2016). An Introduction to the Practical Aspects of Ore Treatment and Mineral. Chapter 6 Crushers, Eighth Edition. Wills' Mineral Processing Technology. Recovery: Elsevier: 126-146.

Zhang Xingang (2019). Model Smoothing Method of Contact-Impact Dynamics in Flexible Multibody Systems. Mechanism and Machine Theory. Volume 138: 124-148.

Bereket Yohannes and Xue Liu (2018). Particle Size Induced Heterogeneity in Compacted Powders: Effect of Large Particles. Advanced Powder Technology. Volume 29: 2978-2986.

Jaw Crusher (2016). Mineral Processing Design and Operations. Second Edition, an Introduction: 123-152.

Avi Uzi and Avi Levy (2018). Energy Absorption by the Particle and the Surface during Impact. Wear.Volumes 404-405: 92-110.

Weining Xie, Yaqun He and Lili Qu (2018). Effect of Particle Properties on the Energy-Size Reductionof Coal in the Ball-and-Race Mill. Powder Technology. Volume 333: 404-409.

Sudarshan Martins (2016). Size-Energy Relationship in Kominusi, Incorporating Scaling Laws and Heat. International Journal of Mineral Processing. Volume 153: 29-43.

Jiayuan Luo, Gun Huang and Long Zhang (2018). Micro Shape of Coal Particle and Crushing Energy.International Journal of Mining Science and Technology. Volume 28: 1009-1014.

Yongfu Xu (2018). The Fractal Evolution of Particle Fragmentation under Different Fracture Energy.Powder Technology. Volume 323: 337-345.

Tian-xing Hou, Qiang Xu and Xing-guo Yang • (2015). Experimental Study of the FragmentationCharacteristics of Brittle Rocks by the Effect of a Free-Fall Round Hammer. International JournalFracture. Volume 194: 169-185.

WeiLi Tristan, J. Delaney and Xiangmin Jiao1 (2016). Finite Element Model for Brittle Fracture andFragmentation. Procedia Computer Science. Volume 80: 245-256.

Li Xuefeng, Wang Shibo and Ge Shirong (2018). Investigation on the Influence Mechanism of Rock Brittleness on Rock Fragmentation and Cutting Performance by Discrete Element Method.Measurement. Volume 113: 120-130.

Martin J. Rhodes (2008). Introduction to Particle Technology. 2nd Edition. John Wiley and Sons, Ltd: ISBN 9780470014271.

Georg Unland (2007). The Principles of Single-Particle Crushing. Handbook of Powder Technology. Germany, Elsevier: Volume 12.

Fuzuli Agrı Akcay (2018). Theoretical Prediction of Fracture of Initially Crack-Free Brittle Materials.Procedia Structural Integrity. Volume 13: 1695-1701.

Jiayuan Luo, Gun Huang and Long Zhang (2018). Micro Shape of Coal Particle and Crushing Energy.International Journal of Mining Science and Technology. Volume 28: 1009-1014.

Zhang and Zongxian (2017). Kinetic Energy and its Applications in Mining Engineering. International Journal of Mining Science and Technology. Volume 27: 237-244.

Tobias Hoertha and Frank Schäfera (2015). Momentum Transfer in Hypervelocity Impact Experimentson Rock Targets. Procardia Engineering. Volume 103: 197-204.

Brian Law (1993). Fracture of Brittle Solids. Second Edition. A Cambridge University Press: ISBN 0521 40972 1.

J. W. Morris, Jr (2002). Materials Science: Defects in Crystals. Berkley: University of California at Berkeley.

Min Seok Choi and Jin Won Lee (2015). Characteristics of Kinetic Energy Transfer in Collisions between a Fragile Nano-Particle and a Rigid Particle on a Surface. Journal of Aerosol Science.Volume 84: 1-8.

Zhang Dongmei (2017). Study on Collision of Threaded Connection during Impact. InternationalJournal of Impact Engineering. Volume 106: 133-145.

Fatemeh Saeidi (2016). A henomenological Model of Single Particle Breakage as A Multi-Stage Process. Minerals Engineering. Volume 98: 90-100.

C. Z. Tan (2018). Wave Equation for the Energy and the Momentum of a Moving Particle. Optik.Volume 168: 864-872.

Published
2023-06-26
How to Cite
Rinaldi, R., Hakim Nasution, L., Simeru, A., Isra, A., & Syafar, S. (2023). Proses Kominusi Batubara Berdasarkan Kinetic Energy Impact . Jurnal Surya Teknika, 10(1), 706-711. https://doi.org/10.37859/jst.v10i1.4991
Abstract views: 342 , *.pdf downloads: 346