Kajian Komprehensif Variasi Bentuk Blade Turbin Angin: Analisis Aerodinamika, Biomimetik, dan Efisiensi Energi

Authors

  • Wahyu Adjie Pangestu Politeknik Negeri Sriwijaya
  • Padmarani Minora Politeknik Negeri Sriwijaya
  • Rusdianasari Rusdianasari Politeknik Negeri Sriwijaya

DOI:

https://doi.org/10.37859/jst.v12i2.10569
Keywords: Turbin Angin, Variasi Bentuk Blade, Biomimetik, Koefisien Daya, Efisiensi Aerodinamis

Abstract

Pengembangan turbin angin modern sangat bergantung pada optimasi desain bilah (blade) untuk memaksimalkan konversi energi kinetik angin menjadi energi mekanik dan listrik. Variasi bentuk blade termasuk modifikasi biomimetik seperti leading-edge tubercles dan trailing-edge serrations, penggunaan winglet pada ujung bilah, desain helical pada turbin sumbu vertikal (VAWT), serta perubahan geometri airfoil dan geometri Savonius merupakan fokus riset utama untuk meningkatkan koefisien daya (Cp), torsi awal, stabilitas aliran, dan pengurangan kebisingan. Artikel ini meninjau 24 jurnal nasional dan internasional dan menganalisis dampak variasi bentuk blade terhadap performa turbin angin. Hasil tinjauan menunjukkan bahwa modifikasi yang diinspirasi oleh alam (biomimetik) dapat secara konsisten meningkatkan efisiensi aerodinamis dan mengurangi gangguan aliran, sementara desain helical dan Savonius yang dioptimalkan sangat cocok untuk kondisi kecepatan angin rendah. Kajian ini menegaskan pentingnya inovasi geometri blade sebagai jalur strategis dalam pengembangan turbin angin yang lebih efisien dan adaptif ke berbagai kondisi lingkungan.

Downloads

Download data is not yet available.

Author Biographies

Wahyu Adjie Pangestu, Politeknik Negeri Sriwijaya

Program Studi Teknik Energi Terbarukan, Jurusan Teknik Kimia

Padmarani Minora, Politeknik Negeri Sriwijaya

Program Studi Teknik Energi Terbarukan, Jurusan Teknik Kimia

Rusdianasari Rusdianasari, Politeknik Negeri Sriwijaya

Program Studi Teknik Energi Terbarukan, Jurusan Teknik Kimia

References

W. Duan, W. Chen, X. Zhao, and W. Qiao, “Numerical Studies on the Effect of Leading Edge Tubercles on a Low-Pressure Turbine Cascade,” Energies, vol. 16, no. 11, p. 4398, May 2023, doi: 10.3390/en16114398.

A. T. Wardhana, A. Taqwa, and T. Dewi, “Design of Mini Horizontal Wind Turbine for Low Wind Speed Area,” J. Phys. Conf. Ser., vol. 1167, p. 012022, Feb. 2019, doi: 10.1088/1742-6596/1167/1/012022.

K. Qaissi, O. Elsayed, M. Faqir, and E. Essadiqi, “Aerodynamic Optimization of Trailing-Edge-Serrations for a Wind Turbine Blade Using Taguchi Modified Additive Model,” Energies, vol. 16, no. 3, p. 1099, Jan. 2023, doi: 10.3390/en16031099.

S. Letica and W. N. Alexander, “Understanding the Impact of a Serrated Trailing Edge on the Unsteady Hydrodynamic Field,” J. Aerosp. Eng., vol. 34, no. 4, p. 04021045, July 2021, doi: 10.1061/(ASCE)AS.1943-5525.0001295.

Y. Xing, X. Wang, W. Chen, F. Tong, and W. Qiao, “Experimental Study on Wind Turbine Airfoil Trailing Edge Noise Reduction Using Wavy Leading Edges,” Energies, vol. 16, no. 16, p. 5865, Aug. 2023, doi: 10.3390/en16165865.

W. Xue, S. Jia, H. Wang, Z. Chen, and B. Yang, “An Experimental Study of Noise Reduction in Wind Turbine Airfoils with Serrated Trailing Edges,” Feb. 09, 2025, arXiv: arXiv:2307.12188. doi: 10.48550/arXiv.2307.12188.

B. K. Wardhana and B. Shin, “Numerical investigation of the effect of winglet configurations with multiple cant angles on the aerodynamic performance of wind turbine blade,” Int. J. Sustain. Energy, vol. 43, no. 1, p. 2403486, Dec. 2024, doi: 10.1080/14786451.2024.2403486.

S. U. Handayani, “Effect of Winglets on Improving Wind Turbine Performance,” J. Vocat. Stud. Appl. Res., vol. 3, no. 1, pp. 5–8, May 2021, doi: 10.14710/jvsar.v3i1.10906.

N. R. Arini, Gilang Muhammad, Joke Pratilastiarso, and Setyo Nugroho, “Numerical Study of a Wind Turbine Blade Modification Using 30° Angle Winglet on Clark Y Foil,” Emit. Int. J. Eng. Technol., pp. 311–319, Dec. 2022, doi: 10.24003/emitter.v10i2.680.

J. R. D. Portela et al., “The Effect of Airfoil Geometry Variation on the Efficiency of a Small Wind Turbine,” Technologies, vol. 13, no. 8, p. 328, Aug. 2025, doi: 10.3390/technologies13080328.

S. Verma, A. R. Paul, A. Jain, and F. Alam, “Numerical investigation of stall characteristics for winglet blade of a horizontal axis wind turbine,” E3S Web Conf., vol. 321, p. 03004, 2021, doi: 10.1051/e3sconf/202132103004.

M. Kamal, F. Arifin, and Rusdianasari, “Analysis of the Performance of The Four-Blade Darrieus Wind Turbine at the Jamik Bukit Asam Mosque Complex Tanjung Enim South Sumatra: Analysis of the Performance of The Four-Blade Darrieus Wind Turbine at the Jamik Bukit Asam Mosque Complex Tanjung Enim South Sumatra,” Int. J. Res. Vocat. Stud. IJRVOCAS, vol. 1, no. 2, pp. 45–51, Sept. 2021, doi: 10.53893/ijrvocas.v1i2.52.

S. Sanaye and A. Farvizi, “Optimizing a vertical axis wind turbine with helical blades: Application of 3D CFD and Taguchi method,” Energy Rep., vol. 12, pp. 2527–2547, Dec. 2024, doi: 10.1016/j.egyr.2024.08.059.

H. B. Rasheed, H. S. Zad, M. S. Malik, M. Arif, S. K. Hashmi, and M. Irfan, “Structural Design and Development of a Small-Scale Vertical Axis Wind Turbine for Urban Household Power Generation,” in ICAME 2025, MDPI, Oct. 2025, p. 21. doi: 10.3390/engproc2025111021.

B. Junaidin, “Design Of Helical-Blade Rotor Of Vertical Axis Wind Turbine (VAWT),” Conf. SENATIK STT Adisutjipto Yogyak., vol. 6, Dec. 2020, doi: 10.28989/senatik.v6i0.439.

M. Moreno, I. Trejo-Zúñiga, J. Terrazas, A. Díaz-Ponce, and A. Pérez-Terrazo, “Hybridization of a Micro-Scale Savonius Rotor Using a Helical Darrieus Rotor,” Fluids, vol. 10, no. 3, p. 63, Mar. 2025, doi: 10.3390/fluids10030063.

R. Fauzih, F. Arifin, and R. Kusumanto, “Optimization of Vertical Wind Turbine Performance in Tunnel Area of Coal Conveyor,” in 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), Malang, Indonesia: IEEE, Oct. 2021, pp. 1–4. doi: 10.1109/ICEEIE52663.2021.9616960.

S. Nurmutia, B. Manshoor, A. Khalid, and I. Zaman, “Performance Analysis on a New Design of Blade Shape for Savonius Wind Turbine,” J. Adv. Res. Fluid Mech. Therm. Sci..

Y. D. Herlambang, A. S. Alfauzi, F. Arifin, and Z. F. Emzain, “Optimization of savonius turbine towards different inner blade positions to improve turbine performance,” vol. 21, no. 1, 2023.

K. Ibrahim, V. S. Djanali, and N. Ikhwan, “Numerical Study of Bach-bladed Savonius Wind Turbine with Varying Blade Shape Factor,” Int. J. Mech. Eng. Sci., vol. 4, no. 2, p. 12, Sept. 2020, doi: 10.12962/j25807471.v4i2.7839.

Y. Zhang, T. Han, P. Rainey, P. Sun, and J. Ge, “Research on the Influence of Blade Tip Trailing-Edge Serrated Structure on Wind Turbine Noise Reduction and Performance,” Oct. 30, 2025, Wind technologies/Design concepts and methods for plants, turbines, and components. doi: 10.5194/wes-2025-119.

J. Francisco, D. Rhakasywi, and F. Fahrudin, “Experimental Analysis of the Performance of Savonius VAWT with Different Numbers of Blades on Roofs,” Indones. J. Innov. Stud., vol. 26, no. 4, Sept. 2025, doi: 10.21070/ijins.v26i4.1675.

R. M. Ariefianto, R. N. Hasanah, and W. Wijono, “Unjuk Kerja Performa Turbin Arus Laut Sumbu Vertikal Pada Berbagai Bentuk Sudu Unik,” Rekayasa, vol. 15, no. 1, pp. 53–63, Apr. 2022, doi: 10.21107/rekayasa.v15i1.13572.

Fitrianza, F. Arifin, And C. Rs, “Optimizing The Performance Of Wind Turbines Using Exhaust Gas At The Borang Gas Power Plant,” Int. J. Mech. Energy Eng. Appl. Sci. Ijmeas, Vol. 3, No. 2, Pp. 9–14, May 2025, Doi: 10.53893/Ijmeas.V3i2.405.

R. B. Yuliandi, Rusdianasari, And T. Dewi, “Comparison Of Blade Dimension Design Of A Vertical Wind Turbine Applied In Low Wind Speed,” E3s Web Conf., Vol. 68, P. 01001, 2018, Doi: 10.1051/E3sconf/20186801001.

R. I. Fitranda And I. H. Siregar, “Karakteristik Turbin Angin Savonius 2 Dan 3 Blade Dengan Menggunakan Bantuan Guide Vane,” Vol. 02, 2014.

E. B. Lake, M. Jafri, J. Adisucipto, And P.-K. Ntt, “Pengaruh Kecepatan Angin Dan Sudut Blade Terhadap Unjuk Kerja Turbin Angin Poros Vertikal Tipe Savonius Duabelas Blade,” Vol. 02, No. 01, 2015.

W. Feng, K. Chen, P. Zhao, And H. Gui, “Aerodynamic Noise Reduction Based On Bionic Blades With Non-Smooth Leading Edges And Curved Serrated Trailing Edges,” J. Appl. Fluid Mech., Vol. 16, No. 7, July 2023, Doi: 10.47176/Jafm.16.07.1660.

Downloads

Published

2025-12-21

How to Cite

[1]
W. Adjie Pangestu, P. . Minora, and R. Rusdianasari, “Kajian Komprehensif Variasi Bentuk Blade Turbin Angin: Analisis Aerodinamika, Biomimetik, dan Efisiensi Energi”, JST, vol. 12, no. 2, pp. 347–353, Dec. 2025.

Issue

Section

Research Article