Pemanfaatan Komposit Serat Bambu Jepang (Dracena Surculosa) dengan Penamban Material Powder

Ansor Salim Siregar 1*, Sunny Ineza Putri², Indra Maulana³, Venusa Abriandika¹

¹Program Studi Teknik Mesin, Politeknik Negeri Banyuwangi. Jl. Raya Jember No.KM13, Kawang, Labanasem, Kec. Kabat, Jawa Timur 68461 ²Program Studi Teknik Mesin, Universitas Riau.

Kampus Bina Widya KM. 12,5, Simpang Baru, Kec. Tampan, Kota Pekanbaru, Riau 28293
³Program Studi Teknik Mesin, Universitas Pamulang.

Jl. Suryakencana No.1, Pamulang Bar., Kec. Pamulang, Kota Tangerang Selatan, Banten 15417. *E-mail:* ansorsalim@poliwangi.ac.id*

Abstract

The development of natural composites offers solutions to various material challenges, with bamboo being widely utilized as a reinforcement due to its economic value. This research investigates the influence of material mixture parameters by incorporating Japanese bamboo fibers as reinforcement, along with aluminum powder, silicon dioxide powder, fluorocarbon powder, and epoxy hardener. Bamboo fibers were extracted using a chemical method involving 5% NaOH at 70°C for varying durations. Composites were fabricated with different fiber volume fractions (26%, 32%, 38%). Impact tests on the composite materials revealed a maximum impact strength of 1.13 J/mm² with an absorbed energy of 152 Joules. The highest dd strength, 118.30 N/mm², was observed in composites with 26% fiber volume fraction. Hardness tests yielded a maximum value of 681.4 HLB for the 26% fiber variation while bending tests showed a peak result of 9.37 N/mm for the 32% fiber variation. Conversely, the water absorption test indicated the lowest absorption value of 0.56% in the 38% fiber variation.

Keywords: Composite, Japanese Bamboo, Material Powder

Abstract

Perkembangan komposit alam merupakan solusi dari berbagai permasalahan material, bambu banyak digunakan sebagai renforcement karena memiliki nilai yang ekonomis. Penelitian ini memanfaatkan serat Bambu Jepang sebagai penguat dan ditambahkan *aluminium powder, silicon doxide powder, flourcarbon powder,* dan *epoxy hardener* yang bertujuan untuk mengetahui pengaruh parameter campuran material. Serat bambu diekstrak menggunakna metode *chemical* melibatkan NaOH 5% suhu 70 °C dengan waktu yang berbeda – beda dan pembuatan komposit yang memiliki variasi serat berbeda – beda (26%, 32%, 38%) secara volume. Hasil uji terhadap material komposit bahwa nilai impact tertinggi yaitu 1,13 J/mm² dengan energi yang diserap 152 Joule. Hasil tensile test nilai tertinggi pada variasi serat 26% yaitu 118,30 N/mm². Pengujian *hardness test* nilai tertinggi yaitu 681,4 HLB pada variasi serat 26% dan pengujian bending hasil tertinggi yaitu 9,37 N/mm variasi serat 32%. Sedangkan pada pengujian *water absorption* nilai serap rendah yaitu 0,56% pada variasi serat 38%.

Kata Kunci: Komposit, Bambu Jepang, Material Powder

1. Pendahuluan

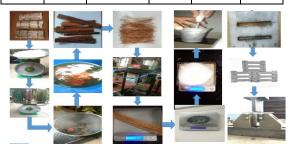
Pengembangan komposit tidak hanya selalu memanfaatkan serat sintetis (fiberglass) [1], tetapi serat alam juga mulai dimanfaatkan [2][3]. Nature Composite salah satu material yang ramah lingkungan [4], memiliki berat jenis yang ringan, tidak mudah mengalami korosi [5] dan memiliki sifat material yang dapat disesuaikan

sesuai dengan keinginan individu. Pengaplikasian komposit alam telah banyak digunakan, seperti pada *lightweight body armor* [6] yang menggantikan material baja dengan material serat alam agar dapat meningkatkan kekuatan pelindungnya.

Bambu merupakan material biomassa yang ramah lingkungan dan material terbarukan yang berkelanjutan jika dibandingkan dengan material lainnya [7]. Secara klasifikasi, bambu memiliki sekitar 1600 spesies [8] yang memiliki karakteristik mekanik yang mirip dengan kayu dan merupakan salah satu tanaman cepat tumbuh dengan laju pertumbuhan sekitar 12 cm/hari (Guadua angustifolia). Bambu juga merupakan tanaman yang memiliki serat selulosa berkualitas tinggi dan setiap tahunan yang dapat dipanen beberapa kali [9]. Menurut publikasi daftar tersebut. Indonesia merupakan salah satu negara penghasil bambu terbesar keempat di dunia setelah India dan 11,5% spesies bambu dunia terdapat di Indonesia [10]. Dengan demikian, bambu telah digunakan sebagai bahan konstruksi dan dimanfaatkan dalam berbagai keperluan lainnya sehingga hingga saat ini, pemanfaatan dan sifat-sifatnya masih perlu dikaji [11]. Perkembangan komposit merupakan sejarah transisi material yang menunjukkan adanya evolusi dari pengembangan material logam menjadi material komposit hingga material hibrida [12][13]. Namun, terkait dengan pencemaran lingkungan dan krisis energi, material logam memang masih digunakan dalam pembuatan aplikasi-aplikasi tertentu seperti aluminium yang digunakan dalam material lithium-ion [14] untuk bahan bakar roket, bahan peledak, pigmen cat, tinta [15] dan dalam pembuatan hidrotermal [16].

Penelitian tentang komposit alam dengan penambahan material powder dapat dikatakan belum banyak dilakukan seperti yang dilakukan oleh T. Raj Kumar, dkk [17]. Dalam penelitian tersebut, komposit dengan menggunakan serat pisang yang dikombinasikan dengan copper powder dan dari kesimpulannya menunjukkan nilai kekuatan material lebih baik, namun terjadi laju korosi yang cepat akibat penggunaan *copper* powder. Penelitian lainnya mengkombinasikan serat bambu dengan aluminium oksida (Al₂O₃), dimana hasil menunjukkan bahwa terjadi peningkatan kuat tarik dan kuat impact hingga 70%, tetapi terjadi penurunan pengaruh selulosa serat bambu 8% yang menyebabkan penurunan flexural strength [18].

Penelitian komposit ini memanfaatkan serat bambu Jepang (*Dracena Surculosa*) sebagai *renforcement* dengan menambahkan *aluminium powder*, *slicon dioxide powder*, dan *flourocarbon powder* yang memiliki komposisi berbeda - beda. Pemanfaatan serat bambu dilakukan terlebih dahulu dengan menggunakan metode *chemical extraction* NaOH 5% suhu 70 °C. Standar untuk pengujian material akan diterapkan standar pembuatan *fender* sebagaimana material komposit ini akan diaplikasikan untuk kebutuhan otomotif. Hal ini merupakan pendekatan baru


yang belum banyak dijelajahi, terutama di konteks lokal Indonesia.

2. Metodologi

Sebagai parameter untuk membentuk material komposit ditetapkan seperti data pada tabel 1. Komposisi Spesimen dan metode pembentukan komposit adalah dengan menggunakan metode layup [19]. Sebelum melakukan pembentukan komposit terlebih dahulu melakukan pengujian tarik terhadap serat, dimana sebelumnya sudah dilakukan perlakukan metode chemical extraction melibatkan NaOH 5% suhu 70 °C [20] terhadap bambu dengan waktu 60, 90 dan 120 menit untuk mendapatkan serat yang kuat. Ditentukan juga sebelumnya bahwa serat yang digunakan berdiameter 0,5-1 mm ketebalan batang bambu ditentukan sebelum dilakukan ekstraksi, yaitu dengan ketebalan 1 mm dan panjang 20 cm. Tahap pembuatan komposit yang diterapkan pada penelitian ini dapat dilihat seperti pada gambar 1 berikut.

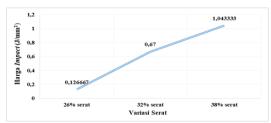
Tabel 1.

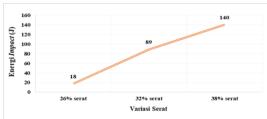
Speciment	Fiber Bamboo (%)	Resin Epoxy LY556 and Hardener HY951	Aluminium Powder (%)	Silicon dioxide powder (%)	Fluorocarbon powder (%)
	_)		_
1	26	60	7	3	4
2	32	55	6	4	3
3	38	50	5	5	2

Gambar 1. Metode pembuatan serat hingga pengujian material komposit.

3. Hasil dan Pembahasan

Dari hasil pengujian yang dilakukan terhadap serat bahwa hasil menunjukkan nilai paling tinggi terdapat pada serat bambu dengan waktu perendaman 120 menit dengan nilai 31,98 N/mm², sedangkan waktu dengan 60 menit yaitu 30,06 N/mm² dan waktu 90 menit memiliki nilai 26,2 N/mm². Maka dalam hal tersebut,

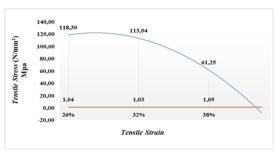

diterapkan serat bambu 120 menit untuk melakukan pembentukan material komposit.


Gambar 2. Specimen mold komposit

3.1 Data Hasil Pengujian Impact

Pada pengujian *impact* dilakukan dengan metode *charpy* dengan standar spesimen ASTM D 6110-04. Data hasil pengujian secara rata- rata dapat dilihat pada gambar 3 dan gambar 4. Tentunya pada setiap pengujian bahan komposit digabungkan dengan 5 jenis bahan yaitu serat banmbu, resin, dan persetasi tambahan *powder* lainnya sesuai dengan spesimen seperti pada Tabel 1 yang sudah ditentukan terlebih dahulu.

Gambar 3. Grafik hubungan variasi serat dengan harga impact


Gambar 4. Grafik hubungan variasi serat dengan energi

Nilai ketangguhan *impact* pada spesimen dengan variasi serat 26% nilai rata-ratanya 0,12 J/mm² dengan energi yang diserap 18 joule. Pada spesimen dengan variasi serat 32% nilai rata-rata ketangguhanya 0,67 J/mm² dengan energi yang diserap 89 joule, dan spesimen dengan variasi 38% nilai rata-rata ketangguhanya serat meningkat 1,04 J/mm² dengan energi yang diserap sebanyak 140 Joule. Dapat dilihat bahwa variasi serat 38% serat bambu resin mengalami peningkatan, hal ini dikarenakan secara bambu yang digunakan komposisi serat merupakan serat bambu paling banyak dari ketiga jenis komposisi yang diterapkan dan dimungkinkan matriks (resin) menyesuaikan

secara keseimbangan sehingga serat dan matrik bekerja dengan baik terhadap gaya-gaya yang terjadi pada proses pengujian. Berdasarkan data yang di peroleh dari grafik, dapat di simpulkan bahwa semakin banyak penggunaan serat bambu maka semakin banyak energi yang diserap dan semakin kuat kekuatan *impact* yang di hasilkan.

3.2 Data Hasil Uji Tarik

Dari hasil pengujian sampel uji tetap dilakukan dengan membuat tiga variasi komposisi serat bambu (26%, 32%, 38%) sesuai dengan komposisi yang sudah ditetapkan. Pada pengujian ini dilakukan dengan menguji menggunakan lima sampel untuk mendapatkan data yang cukup. Sampel uji yang telah diuji dirata – ratakan dan kemudian menghasilkan grafik seperti pada gambar 5 berikut.

Gambar 5. Grafik hubungan stress dan strain

Berdasarkan grafik gambar pada menunjukan bahwa pengujian tarik variasi serat 26% memiliki kekuatan tarik sebesar 118,30 N/mm² dan perpanjangan sebesar 1,04%. Pada variasi serat 32% kekuatan tarik memiliki nilai sebesar 113,04 N/mm² dan perpanjangan sebesar 1,03 % dan jika dibandingkan dengan serat komposisi 38% maka secara hasil lebih rendah. Nilai kekuatan tarik pada komposisi serat 26% memiliki kekuatan lebih tinggi dari variasi serat 32% dan 38%. Hasil dari uji tarik di atas dapat dinilai bahwa serat dengan variasi serat sedikit maupun banyak ternyata tidak mempengaruhi nilai kekuatan tarik, hal ini dikarenakan jumlah resin mempengaruhi terhadap daya ikat serat dan sehingga serat bambu makin solid.

3.3 Data Hasil Uji Kekerasan

Pada pengujian kekerasan dilakukan pada 5 titik pengujian tiap spesimen bahan dengan masing-masing 5 titik pada spesimen A1, spesimen A2, Spesimen A3 dengan variasi serat 26%, dan masing-masing 5 titik pada spesimen B1, spesimen B2, spesimen B3 dengn variasi serat sama 32% dan pada spesimen C1, C2, C3 dengan variasi serat 38%. Berikut tabel 9 hasil pengujin kekerasan *equotif.* Pada gambar 6. Grafik hubungan variasi serat dengan kekerasan

equotif di bawah merupakan hubungan variasi serat terhadap nilai kekerasan (HLB). Didapat nilai rata-rata pada spesimen dengan variasi serat 26% dengan nilai tertinggi 681,4 HLB sedangkan untuk spesimen dengan variasi serat 32% memiliki nilai rata – rata 557,2 HLB.

 ${\bf Gambar~6.}~{\bf Grafik~hubungan~variasi~serat~dengan~kekerasan} \\ {\it equotif}$

Kemudian untuk spesimen dengan variasi serat 38% dengan nilai rata-rata kekerasan 364 HLB. Hasil dari pengujian yang memperlihatkan data di atas dapat dinyatakan bahwa nilai kekerasan dengan variasi serat 26% menghasilkan nilai kekerasan tertinggi dibanding variasi serat yang lain. Adapun secara perhitungan dilakukan uji kekerasan sebagai berikut:

- 1. Variasi serat 26% dengan nilai rata-rata tertinggi 681,4 HL
- a. Harga rata-rata adalah:

$$\bar{x} = \frac{\sum xi}{n} \tag{1}$$

$$\bar{x} = \frac{3407}{5}$$

$$\bar{x} = 681.4 \, HL$$

2. Nilai penyimpangan dari setiap pengukuran

$$n = 1, (xi - \bar{x})^2 = (670 - 681,4)^2 = 129,96$$

 $n = 2, (xi - \bar{x})^2 = (703 - 681,4)^2 = 466,56$
 $n = 3, (xi - \bar{x})^2 = (691 - 681,4)^2 = 92,66$
 $n = 4, (xi - \bar{x})^2 = (657 - 681,4)^2 = 595,36$
 $n = 5, (xi - \bar{x})^2 = (686 - 681,4)^2 = 21,16$

jumlah hasil akhirnya adalah 129,96 + 466,56 + 92,66 + 595,36 + 21,16 = 1305,2

3. Setelah jumlah penyimpangan diketahui maka varian dihitung menggunkan rumus:

$$\delta^{2} = \frac{(xi - \bar{x}i)}{n - 1}$$
 (2)
$$\delta^{2} = \frac{1305,2}{5 - 1}$$

$$\delta^2 = \frac{1305,2}{5-1}$$

= 326,3 HL

4. Nilai standar deviasi dihitung dari akar hasil varian yang diketahui

$$\delta = \sqrt{\delta^2}.....(3)$$

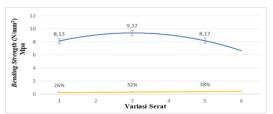
$$\delta = \sqrt{326,3}$$

$$\delta = 18,08$$

Dengan cara yang sama maka diperoleh hasil *sample* 2 dan 3.

5. Konversi Nilai Kekerasan HL Ke Skala Brinell

Skala *brinell* merupakan skala yang sudah dipakai cukup luas, untuk mengkonversi nilai kekerasan *Leeb* (HL) ke *Brinell* (HB) pada logam dapat dihitung dengan persamaan HB = 0,317. Sehingga hasil keseluruhan dapat dituliskan:

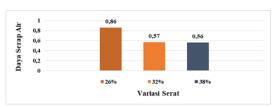

Tabel 2. Hasil Nilai Kekerasan

Sampel Uji	Nilai Kekerasan (HL)	Nilai Kekerasan (HB)
1	681,4	811,4
2	557,2	757,2
3	364	673

3.4 Data Hasil Uji Bending

Pengujian ini menjadi salah satu pengujian yang di butuhkan dalam pembuatan fender. Uji lengkung (bending test) merupakan salah satu bentuk pengujian untuk menentukan mutu suatu material secara visual, selain itu uji bending digunakan untuk mengukur kekuatan material akibat pembebanan dan kekuatan lengkungnya, selanjutnya data tersebut akan ditampilkan dalam bentuk tabel dan grafik. Pengujian bending ini memiliki tiga variasi spesimen dimana pastinya masing-masing spesmen mimiliki kekuatan yang berbeda beda, komposisi dari spesimen pengujian bending sesuai pada tabel 1 yaitu serat 26% ,32% dan 38%.

Sebagai hasil dari pada pengujian bending dapat dilihat seperti pada gambar 7 berikut. Pada pengujian bending membuat tiga variasi spesimen yang dimana masing masing spesimen memiliki komposisi yang berbeda, di mana penguji mengkombinasikan resin, serat bambu dan tiga bahan yaitu aluminium *powder*, silikon dioxide, dan *fluorocarbon* sebagai campuran secara keseluruhan.



Gambar 11. Hubungan variasi serat dengan kekuatan bending

Hasil nilai dari pengujian bending pada masing masing variasi spesimen, dimana spesimen dengan variasi serat bambu 26% didapatkan kekuatan bending 8,13 N/mm², kemudian pada spesimen dengan variasi serat bambu 32% didapat kekuatan bending yaitu 9.13 N/mm², kemudian pada spesimen dengan variasi serat bambu 38% memiliki kekuatan bending yaitu 8,17 N/mm². Nilai-nilai kekuatan bending ini pun telah di buat dalam bentuk grafik 4.5 agar mempermudah analisa kekuatan nilai bending tersebut yang dapat di simpulkan bahwa kekuatan bending terkuat di miliki oleh spesimen dengan variasi serat bambu 32% yaitu dengan nilai bending 31.75 N/mm². Dan kekuatan bending terendah di hasilkan dari spesimen dengan variasi serat bambu 26% yaitu dengan nilai bending 8,13 N/mm². Pada spesimen dengan variasi serat bambu 38% memiliki nilai yang hampir sama dengan variasi serat bambu 32% yaitu 8,17 N/mm², hal ini dikarenakan volume serat yang tidak sebanding dengan volume resin.

3.5 Data Hasil Uji Serap Air (Water Absorption)

Pengujian Water Absorption dilakukan untuk mengetahui penyerapan air optimum yang dimiliki komposit. Dengan merendam komposit dalam air dengan waktu tertentu dapat diketahui besaran jumlah air yang diserap kedalam komposit. Semakin banyak spesimen komposit menyerap air, maka semakin berkurang kekuatan mekanik komposit. Berikut data hasil dari pengujian water absorption.

Gambar 12. Grafik hasil dari pengujian water absorption.

Dari grafik diatas dapat disimpulkan nilai rata – rata daya serap air paling tinggi didapat pada spesimen dengn variasi serat 26% yaitu sebesar 0,86% daya serap air. Sedangkan nilai rata-rata daya serap air paling rendah terdapat pada variasi serat terbanyak 38% yaitu sebanyak 0,56% daya serap air dan pada variasi serat 32% nilai daya serap air hampir sama dengan variasi serat 38% yaitu 0,57%. Pada penelitian ini semua nilai rata-rata daya serap air dari setiap spesimen dikatakan sangat baik untuk pembuatan fender karena tidak melebihi nilai optimum daya serap air yaitu sebanyak 6%. Dari tiga spesimen dengan perbandingan variasi serat diambil nilai rata-rata daya serap paling kecil yaitu 0,56% karena sangat berpengaruh pada kekuatan mekanik komposit itu sendiri, dimana semakin banyak nilai daya serap air pada spesimen maka semakin kecil kekuatan mekaniknya.

4. Simpulan

Peningkatan nilai ketangguhan pada pengujian impact dipengaruhi oleh banyaknya variasi serat dan jumlah serat bekerja secara maksimal. Melihat analisis yang telah dikaji, kekuatan yang didapatkan, spesimen tersebut dapat diaplikasikan untuk kebutuhan bagian part otomotif yaitu sebagai bahan fender berdasarkan standar JIS A5908-2003. Hasil pengujian tensile nilai rata-rata paling tinggi terdapat pada variasi serat 26% yaitu sebesar 118,30 N/mm² jika dibandingkan dengan variasi serat lainnya. Kemudian, jika dari hasil pengujian tensile diaplikasikan untuk kebutuhan otomotif pada fender maka standar yang digunakan adalah standar ISO 9001:2008 yaitu 80-130 MPa. Maka hasil dari uji tensile dapat memenuhi pada pengaplikasian tersebut. Pada standar ISO9001:2008 yaitu 65 HRC = 700 HB untuk pengujian kekerasan dimana hasil paling tinggi yaitu terdapat pada variasi serat 26%. Pada variasi serat 32% nilai kekerasanya 557,2 HLB. Dari pengujian metode tripoint bending didapat hasil analisis perhitungan tegangan bending dari ketiga variasi serat masih dapat digunakan sebagai bahan untuk pembuatan fender karena sudah mendekati hasil dari pengujian pada penelitian sebelumnya. Sedangkan nilai rata rata water absorption paling rendah terdapat pada variasi serat terbanyak 38% vaitu sebanyak 0.56% dan secara standar ISO 9001:2008 vaitu 1% hal ini masih sangat baik. Maka, hasil penelitian ini secara properties material dapat aplikasian untuk kebutuhan fender otomotif.

Daftar Pustaka

[1] V. M. Astashkin And M. V. Mishnev, "On The Development Of The Manufacturing Technology Of Fiberglass Cylindrical Shells Of Gas Exhaust Trunks By Buildup

- Winding," *Procedia Eng.*, Vol. 150, Pp. 1636–1642, 2016, Doi: 10.1016/J.Proeng.2016.07.144.
- [2] B. Lefevre, R. West, P. O'reilly, And D. Taylor, "A New Method For Joining Bamboo Culms," *Eng. Struct.*, Vol. 190, No. April, Pp. 1–8, 2019, Doi: 10.1016/J.Engstruct.2019.04.003.
- [3] P. Aditya, K. Kishore, And D. Prasad, "Characterization Of Natural Fiber Reinforced Composites," *Int. J. Eng. Appl. Sci.*, Vol. 4, No. 6, P. 257446, 2017.
- [4] N. Patel And P. Jain, "An Investigation On Mechanical Properties In Randomly Oriented Short Natural Fiber Reinforced Composites," *Mater. Today Proc.*, No. Xxxx, 2020, Doi: 10.1016/J.Matpr.2020.05.452.
- [5] L. Kerni, S. Singh, A. Patnaik, And N. Kumar, "A Review On Natural Fiber Reinforced Composites," *Mater. Today Proc.*, Vol. 28, Pp. 1616–1621, 2020, Doi: 10.1016/J.Matpr.2020.04.851.
- [6] A. Ali *Et Al.*, "Ballistic Impact Properties Of Woven Bamboo- Woven E-Glass-Unsaturated Polyester Hybrid Composites," *Def. Technol.*, Vol. 15, No. 3, Pp. 282–294, 2019, Doi: 10.1016/J.Dt.2018.09.001.
- [7] Y. Wei, S. Yan, K. Zhao, F. Dong, And G. Li, "Experimental And Theoretical Investigation Of Steel-Reinforced Bamboo Scrimber Beams," *Eng. Struct.*, Vol. 223, No. July, P. 111179, 2020, Doi: 10.1016/J.Engstruct.2020.111179.
- [8] D. E. C. Depuydt *Et Al.*, "European Bamboo Fibres For Composites Applications, Study On The Seasonal Influence," *Ind. Crops Prod.*, Vol. 133, No. March, Pp. 304–316, 2019, Doi: 10.1016/J.Indcrop.2019.03.026.
- [9] R. Förster, A. Loth, D. Dahlan, And D. L. Zariatin, "First Investigations Of Renewable Raw Materials For Engineering Applications," Wcte 2018 World Conf. Timber Eng., No. D, 2018.
- [10] Y. Goh, S. P. Yap, And T. Y. Tong, "Bamboo: The Emerging Renewable Material For Sustainable Construction." Elsevier Ltd., 2019. Doi: 10.1016/B978-0-12-803581-8.10748-9.
- [11] W. Liu, Y. Yu, X. Hu, X. Han, And P. Xie, "Quasi-Brittle Fracture Criterion Of Bamboo-Based Fiber Composites In Transverse Direction Based On Boundary Effect Model," *Compos. Struct.*, Vol. 220,

- No. March, Pp. 347–354, 2019, Doi: 10.1016/J.Compstruct.2019.04.008.
- [12] D. Saro *Et Al.*, "Evolusi Material Komposit Dalam Desain Dan Penerapan Komponen Mesin: Tinjauan Pustaka," Vol. 4, No. 01, Pp. 7–12, 2025.
- [13] A. F. M. Nor, M. T. H. Sultan, M. Jawaid, A. M. R. Azmi, And A. U. M. Shah, "Analysing Impact Properties Of Cnt Filled Bamboo/Glass Hybrid Nanocomposites Through Drop-Weight Impact Testing, Uwpi And Compression-After-Impact Behaviour," *Compos. Part B Eng.*, Vol. 168, Pp. 166–174, 2019, Doi: 10.1016/J.Compositesb.2018.12.061.
- [14] M. Khalis And M. Yamin, "Analisis Suhu Sistem Penggerak Elektrik Pada Prototipe Kendaraan Ug-Hev (Hybrid Electric Vehicle)," *J. Ilm. Tek. Mesin*, Vol. 7, No. 1, P. 2021, 2021, [Online]. Available: Http://Ejournal.Uika-Bogor.Ac.Id/Index.Php/Ame/Index
- [15] D. Indrawan, T. Permata, And A. Samudro, "Limbah Aluminium Untuk Pembuatan Bracket Pada," Vol. 14, No. 02, Pp. 216–227, 2024.
- [16] Y. Tuo, W. Chen, H. Zhang, P. Li, And X. Liu, "One-Step Hydrothermal Method To Fabricate Drag Reduction Superhydrophobic Surface On Aluminum Foil," *Appl. Surf. Sci.*, Vol. 446, Pp. 230–235, 2018, Doi: 10.1016/J.Apsusc.2018.01.046.
- [17] T. R. Kumar *Et Al.*, "Experimental Evaluation On Natural Composites With The Incorporation Of Metal Powders," *Mater. Today Proc.*, No. Xxxx, 2019, Doi: 10.1016/J.Matpr.2019.06.553.
- [18] R. Harikumar And A. Devaraju, "Evaluation Of Mechanical Properties Of Bamboo Fiber Composite With Addition Of Al2o3 Nano Particles," *Mater. Today Proc.*, Vol. 39, No. Xxxx, Pp. 606–609, 2020, Doi: 10.1016/J.Matpr.2020.08.613.
- [19] J. J. Lynch, "Advanced Composites Materials And Their Manufacture Technology Assessment," *J. Nerv. Ment. Dis.*, Vol. 168, No. 11, Pp. 701–703, 2015.
- [20] P. Zakikhani, R. Zahari, M. T. H. Sultan, And D. L. Majid, "Extraction And Preparation Of Bamboo Fibre-Reinforced Composites," *Mater. Des.*, Vol. 63, Pp. 820–828, 2014, Doi: 10.1016/J.Matdes.2014.06.058.