Analisis Kebutuhan Bahan Baku pada Proses Pengolahan Air Bersih di PDAM IPAM Ngagel Surabaya

Laksana Fadhil Atthalah*, Hery Murnawan

Universitas 17 Agustus 1945 Surabaya Jl. Semolowaru No.45, Menur Pumpungan, Kec. Sukolilo, Surabaya, Jawa Timur 60118 *E-mail*: laksanafadhil83@gmail.com*

The IPAM Ngagel in Surabaya treats water from the Surabaya River using Poly Aluminium Chloride (PAC) for coagulation and chlorine for disinfection. This study identifies the raw material needs for each treatment stage using daily production, chemical usage, and waste data to estimate requirements by the end of 2025. Average production is 4,480.03 L/second. PAC dosage ranges from 25.28–114.55 mg/L, chlorine from 0.96–5.72 mg/L. Estimated PAC needs range from 11,709.02–53,861.47 kg, and chlorine from 468.36–2,810.16 kg. Safety stocks and reorder points vary per unit: Ngagel I (PAC 18,480 kg; chlorine 686 kg), Ngagel II PAC 7,840 kg; chlorine 288 kg, Ngagel III PAC 19,012.5 kg; chlorine 840 kg. For 3-day PAC and 7-day chlorine reserves, Ngagel I needs 47,000–60,000 kg PAC and 3,000–3,750 kg chlorine, Ngagel II 21,500–25,500 kg PAC and 1,400–1,600 kg chlorine, Ngagel III 40,000–60,000 kg PAC and 3,900–5,400 kg chlorine.

Keywords: IPAM, PAC, CHLOR, Raw Material.

Instalasi Pengolahan Air Minum (IPAM) Ngagel di Surabaya mengolah air Sungai Surabaya melalui koagulasi menggunakan Poly Aluminium Chloride (PAC) dan desinfeksi dengan klorin. Penelitian ini bertujuan mengidentifikasi kebutuhan bahan baku dalam tiap tahap pengolahan. Data harian produksi, penggunaan bahan kimia, dan limbah digunakan untuk menganalisis kebutuhan bahan baku akhir tahun 2025. Rata-rata produksi mencapai 4.480,03 L/detik. Dosis PAC berkisar 25,28–114,55 mg/L, dan klorin 0,96–5,72 mg/L. Kebutuhan PAC antara 11.709,02–53.861,47 kg, dan klorin 468,36–2.810,16 kg. Stok pengaman dan titik pemesanan ulang Ngagel I PAC 18.480 kg dan klorin 686 kg, Ngagel II PAC 7.840 kg; klorin 288 kg, Ngagel III PAC 19.012,5 kg; klorin 840 kg. Untuk kebutuhan PAC 3 hari; klorin 7 hari, Ngagel I butuh PAC 47.000–60.000 kg dan klorin 3.000–3.750 kg, Ngagel II PAC 21.500–25.500 kg, klorin 1.400–1.600 kg, Ngagel III PAC 40.000-60.000 Kg dan Klorin 3.900-5.400 Kg.

Kata kunci: IPAM, PAC, Klorin, Bahan Baku.

1. Pendahuluan

Air merupakan kebutuhan dasar bagi kehidupan manusia dan makhluk hidup lainnya. Sebagai sumber daya yang tidak tergantikan, air berperan penting dalam berbagai aspek kehidupan, mulai dari konsumsi sehari-hari, kebersihan, hingga mendukung aktivitas ekonomi seperti pertanian, industri, dan pembangkit energi. IPAM Ngagel Surabaya sebagai salah satu fasilitas pengolahan air minum memainkan peranan vital dalam menyediakan air layak konsumsi bagi masyarakat Surabaya.

IPAM Ngagel Surabaya memiliki proses pengolahan yang melibatkan berbagai tahapan, mulai dari pengolahan awal, pengendapan, filtrasi, hingga disinfeksi. Setiap tahapan tersebut sangat tergantung pada ketersediaan bahan baku, terutama bahan kimia seperti koagulan dan disinfektan. Bahan kimia tersebut adalah Poly Aluminium Chloride (PAC) yang berfungsi sebagai koagulan untuk mengumpulkan partikelpartikel koloid, dan Chlorine yang digunakan sebagai desinfektan untuk membunuh mikroorganisme patogen. Persediaan dan pengelolaan bahan baku yang tepat tidak hanya berdampak pada kualitas air yang dihasilkan, tetapi juga mempengaruhi efisiensi operasional

Pemakaian bahan Poly Aluminium Chloride (PAC) dan Chlorine dalam proses pengolahan air bersih merupakan tantangan tersendiri. Fluktuasi kualitas air baku, perubahan kondisi lingkungan, serta variasi tingkat kontaminan memerlukan penyesuaian terhadap jumlah dan jenis bahan kimia yang digunakan. IPAM Ngagel Surabaya secara rutin mencatat data produksi dan penggunaan bahan baku dalam proses pengolahan

air bersih setiap hari. Pencatatan ini mencakup berbagai informasi penting, seperti volume produksi air (m³), serta penggunaan bahan kimia berupa PAC dan Chlor dalam kilogram (KG) dan konsentrasi dalam part per million (PPM). Dengan adanya data ini, pengelola dapat melakukan analisis terhadap pola pemakaian bahan baku, memastikan efisiensi dalam distribusi air bersih guna memenuhi kebutuhan masyarakat.

Penelitian ini bertujuan untuk mengidentifikasi volume bahan baku yang diperlukan dalam setiap tahapan pengolahan air di IPAM Ngagel Surabaya, serta mengkaji faktorfaktor yang berpengaruh terhadap variabilitas penggunaannya. Diharapkan dengan adanya analisis yang komprehensif, dapat diperoleh rekomendasi strategis dalam pengelolaan bahan baku guna meningkatkan kualitas air, menekan biaya operasional, dan mendukung pemenuhan kebutuhan air bersih yang berkelanjutan di masa depan.

Air sebagai sumber daya alam yang dibutuhkan oleh semua makhluk hidup memiliki peranan penting dalam menopang kehidupan. Berbagai sektor kehidupan mulai dari niaga dan non niaga baik berskala kecil hingga besar memerlukan air dalam pelaksanaannya. Implikasinya pasokan ketersediaan air perlu dipastikan kuantitas dan kualitasnya dalam jangka waktu tertentu agar kebutuhan air tetap terpenuhi (1). Menurut (2) Tentang Penetapan Kelas Air Pada Air Sungai, Kali Surabaya berdasarkan mutu airnya ditetapkan sebagai air kelas satu, yaitu air yang peruntukannya dapat digunakan untuk air baku air minum, dan/atau peruntukan lain yang mempersyaratkan mutu air yang sama dengan kegunaan tersebut.

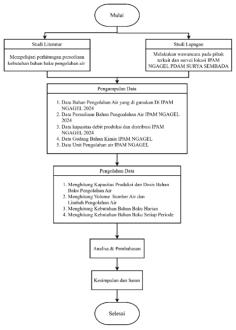
Poly Aluminium Chloride (PAC) adalah garam dasar khusus Aluminium Chloride yang dirancang untuk memberikan daya koagulasi dan flokulasi yang lebih kuat dan lebih baik daripada aluminium biasa dan garam besi. Poly Aluminium Chloride (PAC) digunakan juga di Negara Jepang, Inggris, Italia dan Amerika Serikat. Secara umum dapat d Poly Aluminium Chloride (PAC) digunakan untuk mengolah air permukaan maupun air tanah untuk memperoleh air bersih ataupun air minum. Polv Aluminium Chloride (PAC) mempunyai rumus Aln(OH)mCl(3n-m) (3). Poly Aluminium Chloride (PAC) lebih efektif dalam menurunkan turbiditas karena endapan yang dihasilkan oleh Poly Aluminium Chloride (PAC) lebih banyak dan lebih padat, sedangkan endapan yang dihasilkan oleh tawas berbentuk agregat yang tidak terlalu padat. Poly Aluminium Chloride (PAC) lebih cepat membentuk flok diakibatkan gugus aktif alumina bekerja efektif mengikat koloid yang diperkuat rantai polimer dari gugus polielektrolit sehingga gumpalan floknya menjadi lebih padat (4).

Menurut (5) terdapat beberapa manfaat klorin antara lain:

- 1. Memiliki sifat bakterisidal dan garmisidal
- 2. Dapat mengoksidasi zat besi, mangan, dan hidrogen sulfida
- 3. Dapat menghilangkan bau dan rasa tidak enak pada air
- 4. Dapat mengontrol perkembangan alga dan organisme pembentuk lumut yang dapat mengubah bau dan rasa pada air
- 5. Dapat membantu proses koagulasi.

Karena adanya fungsi lain untuk kondisi tertentu klorinasi dapat dibubuhkan sebelum proses pengolahan. Dengan demikian untuk keperluan pengolahan dapat dilakukan preclorinasi Sedangkan untuk keperluan desinfeksi pembubuhan dilakukan dilokasi reservoir sebagai post clorinisasi (6).

Menurut (7) bahwa safety merupakan persediaan pengaman atau persediaan tambahan yang dilakukan suatu perusahaan agar tidak terjadi kekurangan bahan. Safety stock diperlukan guna mengantisipasi membludaknya permintaan akibat permintaan vang tidak terduga. Kesimpulannya Safety stock adalah jumlah minimum persediaan atau cadangan yang disimpan oleh perusahaan sebagai langkah antisipasi terhadap kemungkinan keterlambatan pengiriman, peningkatan permintaan secara tiba-tiba, atau berbagai ketidakpastian lainnya, dengan tujuan menjaga kelancaran proses produksi dan menghindari kekurangan bahan baku.


Menurut (7) Reorder Point merupakan waktu perusahaan akan memesan kembali atau batas waktu pemesanan kembali dengan melihat jumlah minimal persediaan yang ada. Hal ini penting agar supaya jangan sampai terjadi kekurangan bahan pada saat dibutuhkan. Menurut (8) reorder point adalah jumlah persediaan pada saat pesanan baru harus ditempatkan untuk menghindari kehabisan stok obat. Reorder point memiliki arti penting untuk mengendalikan persediaan agar dapat menjaga ketersediaan obat sehingga pada waktu yang tepat obat dapat dipesan kembali, yaitu pada saat stok tidak kosong dan juga tidak berlebihan.

2. Metodologi

Tempat penelitian berada di PDAM surya sembada yang berlokasi di Jl. Mayjen Prof. Dr. Moestopo No. 2, Pacar Keling, Tambaksari Surabaya, Jawa Timur dan Instalasi Pengolahan Air Minum NGAGEL di Jl. Penjernihan No.1, Ngagelrejo, Kec. Wonokromo, Surabaya, Jawa Timur

Penelitian menggunakan pendekatan kuantitaif bertujuan untuk menganalisis kebutuhan bahan baku yang digunakan dalam proses pengolahan air bersih di IPAM Ngagel Surabaya. Pengumpulan data dilakukan melalui teknik wawancara, teknik observasi dan teknik dokumentasi. Teknik wawancara dilakukan langsung dengan pihak yang terkait dengan bahan baku pengolahan air untuk memperoleh informasi mengenai kebutuhan bahan pengolahan air yang di gunakan, persediaan bahan pengoalahan air, kapasitas debit produksi dan distribusi, dan data penyimpanan bahan kimia.

Proses pengolahan data dilakukan untuk menyusun seluruh informasi yang telah terkumpul menjadi data yang terstruktur dan siap dianalisis. Proses pengolahan melibatkan perhitungan kapasita produksi dan dosis bahan baku, menghitung, menghitung volume sumber air dan limbah, mengitung kebutuhan bahan baku harian, serta mengitung kebutuhan bahan baku setiap periode pengiriman.

Gambar 1. Diagram Alur Penelitian

Penelitian dimulai dengan mengnalisis masalah utama dalam kebutuhan air dan pengolahan air di IPAM Ngagel. Melalui wawancara, survei, dan pengamatan. Studi literatur dilakukan setelah peneliti menemukan sebuah permasalahan yang terjadi di PDAM Surya Sembada. Peneliti mencari studi literatur dengan cara membaca dan

mencari buku-buku yang berhubungan dengan topik yang peneliti ambil agar peneliti dapat menyelesaikan permasalahan yang ada di IPAM Ngagel PDAM Surya Sembada. Kemudian setelah mengumpulakn Data tersebut meliputi data bahan pengolahan air yang di gunakan Di Ngagel, data persediaan **IPAM** pengoalahan air, data kapasitas debit produksi dan distribusi, data gudang bahan kimia, Data unit pengolahan air. Setelah semua data terkumpul dilakikan proses pengolahan data. Proses pengolahan melibatkan perhitungan kapasitas produksi dan dosis bahan baku, menghitung, menghitung volume sumber air dan limbah, mengitung kebutuhan bahan baku harian, serta mengitung kebutuhan bahan baku setiap periode pengiriman.

3. Hasil dan Pembahasan

Bagian ini berisi hasil dan pembahasan penelitian. Pembahasan dibuat dalam beberapa sub-bab dan tertulis miring.

3.1. Dosis Bahan PAC dan Chlor Rata-Rata

Perhitungan dosis Poly Aluminium Chloride (PAC) dan Chlor (Klorin) untuk tiap harinya dihitung rata-rata dalam satu bulan untuk mempermudah perhitungan.

Tabel 1. Rata-rata dosis Harian Ngagel I

	NGAGEL I (2024)			
Bulan	Rata-Rata PPM	Rata-Rata PPM		
Dulan	PAC (mg/L)	Chlor (mg/L)		
January	70,55	1,60		
February	80,83	1,63		
March	64,74	1,72		
April	65,14	1,68		
May	59,14	1,90		
June	58,93	2,22		
July	58,95	2,30		
August	59,96	2,69		
September	59,74	2,84		
October	58,67	2,91		
November	62,96	2,43		
December	82,12	2,18		

Berdasarkan Tabel diatas untuk instalasi Ngagel I, dosis PAC tertinggi terdapat pada bulan Desember dan terendah pada bulan Oktober, sedangkan dosis Klorin tertinggi terdapat pada bulan Oktober dan terendah pada bulan Januari. **Tabel 2.**Rata-rata dosis Harian Ngagel II

Kata-rata dosis Harian Ngager n					
	NGAGEL II (2024	4)			
	Rata-Rata	Rata-Rata			
Bulan	PPM PAC	PPM Chlor			
	(mg/L)	(mg/L)			
January	61,97	2,17			
February	60,99	2,06			
March	57,29	2,00			
April	60,15	2,03			
May	60,17	2,03			
June	54,94	2,10			
July	60,17	2,10			
August	45,62	1,91			
September	47,05	2,08			
October	57,19	2,52			
November	60,49	2,20			
December	62,43	1,88			

Berdasarkan Tabel diatas untuk instalasi Ngagel II, dosis PAC tertinggi terdapat pada bulan Desember dan terendah pada bulan September, sedangkan dosis Klorin tertinggi terdapat pada bulan Oktober dan terendah pada bulan Desember.

Tabel 3.

R	Rata-rata dosis Harian Ngagel III				
NGAGEL III (2024)					
Bulan	Rata-Rata PPM	Rata-Rata Chlor			
Dulan	PAC (mg/L)	(mg/L)			
January	82,35	1,96			
February	91,76	1,84			
March	59,30	2,13			
April	62,45	2,23			
May	41,91	2,19			
June	59,02	2,02			
July	41,10	2,71			
August	40,73	3,60			
September	48,27	4,01			
October	42,14	4,21			
November	62,88	3,90			
December	78,28	2,78			

Berdasarkan Tabel diatas untuk instalasi Ngagel III, dosis PAC tertinggi terdapat pada bulan Februari dan terendah pada bulan Agustus, sedangkan dosis Klorin tertinggi terdapat pada bulan Oktober dan terendah pada bulan Februari.

3.2. Kapasitas Produksi dan Dosis IPAM Ngagel

Tabel 4. Nilai minimum dan maksimum bulanan Ngagel I

NGAGEL I (2024)						
	Produksi (L/d)		PPM	PAC	PPM Chlor	
Bulan	FIOUUK	SI (L/u)	(mg	g/L)	(n	ig/L)
	MIN	MAX	MIN	MAX	MIN	MAX
January	1.675,66	1.789,35	45,60	100,84	1,55	1,66
February	1.687,11	1.778,99	52,07	114,55	1,56	1,79
March	1.680,13	1.770,09	47,86	83,41	1,59	1,82
April	1.665,15	1.757,72	50,42	91,80	1,25	1,84
May	1.721,75	1.725,00	49,19	65,58	1,41	2,42
June	1.699,48	1.725,00	49,19	67,93	1,61	2,70
July	1.098,16	1.725,00	40,33	92,90	1,73	3,04
August	1.662,30	1.735,69	51,63	66,38	2,24	3,93
September	1.613,50	1.767,86	54,57	67,78	2,28	3,79
October	1.498,78	1.776,07	50,05	67,74	1,72	4,69
November	1.574,12	1.753,10	56,30	84,30	1,78	4,35
December	1.639,35	1.745,15	62,75	102,02	1,92	2,79

Tabel diatas merupakan data nilai minimal dan maksimal bulanan untuk kategori produksi, PAC, dan Klorin pada Instalasi Ngagel I.

Tabel 5.
Nilai minimum dan maksimum bulanan Ngagel II.

INIIai i	Milai illillillilli dali illaksillidili bulallali Ngagel II						
	NGAGEL II (2024)						
	Produk	si (L/d)	PPM		PPM		
Bulan		()	(mg	/L)	(mg	;/L)	
	MIN	MAX	MIN	MAX	MIN	MAX	
January	940,56	985,25	51,42	72,26	1,42	3,40	
February	959,27	989,03	43,09	83,78	1,66	2,88	
March	961,45	989,34	42,29	74,68	1,42	2,63	
April	973,83	994,17	51,05	74,61	1,68	2,25	
May	980,00	993,55	52,64	67,36	1,69	2,26	
June	980,00	993,55	47,71	61,19	1,89	2,52	
July	980,00	993,55	52,64	67,36	1,83	2,54	
August	980,00	993,55	40,53	51,27	1,46	2,29	
September	980,00	993,55	45,04	51,32	1,74	2,78	
October	980,00	993,55	46,10	76,91	1,94	3,38	
November	980,00	993,55	54,44	76,48	1,39	2,94	
December	980,00	993,55	51,42	71,68	1,41	2,81	
	•	•	•				

Tabel diatas merupakan data nilai minimum dan maksimum bulanan untuk kategori produksi, PAC, dan Klorin pada Instalasi Ngagel II.

Tabel 6.

Nilai n	ninimum d	nimum dan maksimum bulanan N				
	1	NGAGEL I	II (2024)			
	Produk	si (L/d)	PPM	PAC	PPM Chlor	
Bulan	Troduk	31 (L/U)	(mg	g/L)	(m	g/L)
	MIN	MAX	MIN	MAX	MIN	MAX
January	1.643,73	1.698,32	60,96	101,59	1,64	2,54
February	1.649,48	1.703,53	60,93	109,98	1,63	2,02
March	1.665,42	1.699,51	29,88	92,91	1,80	2,47
April	1.618,53	1.689,21	35,53	100,09	1,97	2,40
May	1.680,79	1.791,99	35,16	55,89	1,88	2,53
June	1.740,22	1.803,65	39,99	80,29	0,96	2,23
July	1.701,25	1.794,16	34,81	56,21	1,89	3,55
August	1.693,33	1.801,34	34,86	53,76	2,82	4,10
September	1.698,07	1.776,47	33,02	53,77	1,93	5,69
October	1.706,44	1.777,42	25,28	80,00	2,34	5,70
November	1.682,71	1.729,10	40,01	80,69	2,45	5,72
December	1.742,96	1.819,24	36,81	113,40	1,53	4,38

Tabel diatas merupakan data nilai minimum dan maksimum bulanan untuk kategori produksi, PAC, dan Klorin pada Instalasi Ngagel II.

Tabel 7.

	Nilai minimum dan maksimum IPAM Ngagel 2024							
		PRODUKSI (L/d)		PPM PAC		PPM CHLLOR		
	2024	2024		(mg/L)		(mg/L)		
		MIN	MAX	MIN	MAX	MIN	MAX	
	NGAGEL I	1.098,16	1.789,35	40,33	114,55	1,25	4,69	
	NGAGEL II	940,56	994,17	40,53	83,78	1,39	3,40	
	NGAGEL III	1.618,53	1.819,24	25,28	113,40	0,96	5,72	

Berdasarkan tabel diatas merupakan data berdasarkan rata-rata pada tabel nilai minimum dan maksimum bullanan setiap instalasi Ngagel.

Tabel 8.

Kapasitas produksi dan dosis instalasi Ngagel 2024				
2024	PRODUKSI (L/d)	PPM PAC	PPM CHLLOR	
2024		(mg/L)	(mg/L)	
NGAGEL I	1000 - 1800	40 - 115	1 - 5	
NGAGEL II	1000	40 - 85	1 - 4	
NGAGEL III	1600 - 1800	25 - 115	1 - 6	

Berdasarkan tabel diatas pada instalasi Ngagel I memiliki kapasitas produksi mencapai 1.000–1.800 L/Detik, dosis PAC berkisar 40–115 mg/L, dan dosis klorin berkisar 1–5 mg/L. untuk instalasi Ngagel II memiliki kapasitas produksi mencapai 1.000 L/Detik, dosis PAC berkisar 40–85 mg/L,dan dosis klorin berkisar 1–4 mg/L. Sedangkan instalasi Ngagel III memiliki kapasitas produksi sebesar 1.600–1.800 L/detik dengan dosis PAC berkisar 20–115 mg/L dan dosis klorin berkisar 1–6 mg/L.

Tabel 9.

Kapasitas produksi dan dosis IPAM Ngagel 2024					
2024	PRODUKSI (L/d)	PPM PAC (mg/L)	PPM CHLLOR (mg/L)		
NGAGEL	1000 - 1800	25 - 115	1 - 6		

Berdasarkan Tabel diatas IPAM Ngagel sendiri jika menggabungkan keseluruhan instalasi memiliki kapasitas produksi sebesar 1.000–1.800 L/detik dengan dosis PAC berkisar 25–115 mg/L dan dosis klorin berkisar 1–6 mg/L.

3.3. Volume Sumber Air dan Limbah

Tabel 10. Rata-rata produksi dan limbah

Ngagel I							
	NGAGEL I (2024)						
Bulan	Rata-Rata	a Produksi	Rata-Rata	Limbah			
Bulali	m3	L/d	m3	L/d			
January	150.022	1.736,36	15.002,19	173,64			
February	148.994	1.724,46	14.899,37	172,45			
March	148.514	1.718,91	14.851,36	171,89			
April	148.204	1.715,32	14.820,40	171,53			
May	149.031	1.724,90	14.903,09	172,49			
June	148.954	1.724,01	14.895,43	172,40			
July	141.824	1.641,48	14.182,41	164,15			
August	147.618	1.708,55	14.761,83	170,85			
September	147.636	1.708,75	14.763,64	170,88			
October	146.870	1.699,89	14.687,01	169,99			
November	145.982	1.689,61	14.598,25	168,96			
December	146.657	1.697,42	14.665,71	169,74			

Tabel diatas merupakan data rata-rata produksi dan rata rata limbah harian berdasarkan volume (m³ dan L/detik) pada instalasi Ngagel I.

Tabel 11. Rata-rata produksi dan limbah Ngagel II

	NGAGEL II (2024)				
Bulan	Rata-Rata l	Produksi	Rata-Rat	a Limbah	
Duian	m3	L/d	m3	L/d	
January	84.408	976,94	8.440,77	97,69	
February	84.571	978,83	8.457,08	97,88	
March	84.725	980,61	8.472,45	98,06	
April	85.313	987,42	8.531,31	98,74	
May	85.337	987,70	8.533,70	98,77	
June	85.336	987,69	8.533,60	98,77	
July	85.337	987,70	8.533,70	98,77	
August	85.337	987,70	8.533,70	98,77	
September	85.337	987,70	8.533,70	98,77	
October	85.336	987,69	8.533,60	98,77	
November	85.336	987,69	8.533,60	98,77	
December	85.337	987,70	8.533,70	98,77	

Tabel diatas merupakan data rata-rata produksi dan rata rata limbah harian berdasarkan volume (m³ dan L/detik) pada instalasi Ngagel II.

Tabel 12.

Rata-rata produksi dan limbah Ngagel III NGAGEL III (2024) Rata-Rata Limbah Rata-Rata Produksi Bulan m3 L/d m3 L/d 14.450,53 January 144.505 1.672,51 14.538,53 February 145.385 1.682,70 168,27 145.721 1.686,59 14.572.14 168.66 March April 144.015 1.666,84 14.401,46 166,68 May 152.413 1.764,04 15.241,26 176,40 15.343,91 177,59 June 153.439 1.775,92 July 151.080 15.108,03 174,86 1.748,61 15.308,08 177,18 August 153.081 1.771,77 September 149.061 1.725,24 14.906,09 172,52 14.947,29 October 149.473 1.730,01 173,00 November 147.253 1.704,32 14.725,33 170,43 December 154.212 1.784,86 15.421,23 178,49

Tabel diatas merupakan data rata-rata produksi dan rata rata limbah harian berdasarkan volume (m³ dan L/detik) pada instalasi Ngagel III.

Tabel 13.

Rata-rata produksi air dan Limbah tiap harinya					
2024	Rata-Rata	Produksi	Limba	Limbah (10%)	
2024	m3	Liter/detik	m3	Liter/detik	
NGAGEL I	147.526	1.707,47	14.753	170,75	
NGAGEL II	85.337	987,70	8.534	98,77	
NGAGEL III	154.212	1.784,86	15.421	178,49	
Total	387.075	4.480,03	38.707	448	

Tabel diatas merupakan data rata-rata produksi dan limbah sebesar 10 % dari rata-rata produksi. Dengan total rata-rata produksi sebesar 381.805 m³ dan 4.419,03 L/detik, sedangkan total limbah sebesar 38.180 m³ dan 441,90 L/detik.

Tabel 14.

Rata-rata volume sumber air perhari tahun 2024			
2024	Sumber Air m3 Liter/Detik		
2024			
NGAGEL I	162.278,13	1.878,22	
NGAGEL II	93.870,74	1.086,47	
NGAGEL III	169.633,50	1.963,35	
Total	425.782,37	4.928,04	

Berdasarkan tabel diatas Sumber air berasal dari gabungan produksi air dengan limbah.

3.4. Kebutuhan Bahan Baku Harian

Tabel 15.

Kebutuhan bahan baku IPAM Ngagel				
2024	PAC (KG)		CHLOR (KG)	
2024	MIN	MAX	MIN	MAX
NGAGEL I	4.462,65	20.528,18	178,51	1.071,04
NGAGEL II	2.581,45	11.874,65	103,26	619,55
NGAGEL III	4.664,92	21.458,64	186,60	1.119,58
Total	11.709,02	53.861,47	468,36	2.810,16

Berdasarkan tabel diatas dapat diketahui total dari nilai minimal dan maksimal kebutuhan bahan baku harian setiap instalasi Ngagel

3.5. Safety Stock Kebutuhan Bahan Baku

Tabel 16.

Safety Stock PAC dan Chlor Ngagel I		
NGAGEL I	NGAGEL I PAC CHLO	
2024	KG	KG
January	6.852,65	446,00
February	5.244,64	442,68
March	7.903,42	430,71
April	7.881,60	436,73
May	8.785,71	403,23
June	8.824,00	355,83
July	9.348,29	360,03
August	8.745,81	288,55
September	8.783,48	268,03
October	9.000,53	257,97
November	8.364,13	331,10
December	5.231,74	366,71

Berdasarkan tabel diatas dapat diketahui safety stock rata-rata setiap bulannya untuk bahan PAC dan Klorin pada instalasi Ngagel I.

Tabel 17.Safety Stock PAC dan Chlor
Ngagel II

NCACELI	Ngagel II	CHLOD
NGAGEL I	PAC	CHLOR
2024	KG	KG
January	2.087,10	104,55
February	2.167,14	113,79
March	2.502,58	118,23
April	2.195,33	115,17
May	2.192,26	115,06
June	2.682,67	108,37
July	2.192,26	108,94
August	3.558,06	124,68
September	3.423,87	110,42
October	2.472,00	72,97

November	2.162,00	99,93
December	1.980,00	127,61

Berdasarkan tabel diatas dapat diketahui safety stock rata-rata setiap bulannya untuk bahan PAC dan Klorin pada instalasi Ngagel II.

Tabel 18.Safety Stock PAC dan Chlor
Ngagel III

NGAGEL I	PAC	CHLOR
2024	KG	KG
January	5.916,44	556,32
February	4.344,64	572,29
March	9.504,24	529,16
April	9.146,50	519,47
May	11.994,95	506,06
June	9.048,90	530,37
July	12.175,40	431,10
August	12.155,85	288,77
September	11.097,53	241,65
October	12.085,70	212,80
November	8.829,63	265,87
December	5.744,32	411,61

Berdasarkan tabel diatas dapat diketahui safety stock rata-rata setiap bulannya untuk bahan PAC dan Klorin pada instalasi Ngagel III.

3.6. Reorder Point Kebutuhan Bahan Baku

Tabel 19. Hasil Perhitungan Reorder Point

Trash i cilitungan Reorder i olit		
2024	PAC	CHLOR
2024	KG	KG
NGAGEL I	18.480,0	686
NGAGEL II	7.840	288
NGAGEL III	19.012,5	840

Berdasarkan data tabel diatas merupakan hasil perhitungan reorder point setiap instalasi untuk bahan PAC dan Klorin.

Kebutuhan Bahan Baku per Periode Tabel 20.

Kebutuhan PAC dan Klorin per periode tiga hari Ngagel			
NGAGEL I	GAGEL I PAC (Kg) CHLOI		
2025	3 hari	7 hari	
September	47.569,5	3.611,8	
October	46.918,4	3.682,2	
November	48.827,6	3.170,3	
December	58.224,8	2.921,0	

Berdasarkan tabel diatas dapat disimpulkan kebutuhan PAC setiap periode 3 hari dan Klorin

setiap periode 7 hari pada bulan September, Oktober, November, dan Desember saat akan melakukan *Request Order* untuk memesan kembali bahan PAC dan Klorin pada instalasi Ngagel I.

Tabel 21.Kebutuhan PAC dan Klorin per periode tiga hari Ngagel II

xebutuhan i AC dan Klorin per periode tiga hari Ngager			
NGAGEL II		PAC (Kg)	CHLOR (Kg)
	2025	3 hari	7 hari
	September	21.088,4	1.531,1
	October	23.944,0	1.793,2
	November	24.874,0	1.604,5
	December	25.420,0	1.410,7

Berdasarkan tabel diatas dapat disimpulkan kebutuhan PAC setiap periode 3 hari dan Klorin setiap periode 7 hari pada bulan September, Oktober, November, dan Desember saat akan melakukan Request Order untuk memesan kembali bahan PAC dan Klorin pada instalasi Ngagel II.

Tabel 22.Kebutuhan PAC dan Klorin per periode tiga hari Ngagel III

Redutuliali FAC dali Klorili per periode tiga hari Ngager			
	NGAGEL III	PAC (Kg)	CHLOR (Kg)
	2025	3 hari	7 hari
	September	42.757,4	5.028,5
	October	39.792,9	5.230,4
	November	49.561,1	4.858,9
	December	58.817,0	3.838,7

Berdasarkan tabel diatas dapat disimpulkan kebutuhan PAC setiap periode 3 hari dan Klorin setiap periode 7 hari pada bulan September, Oktober, November, dan Desember saat akan melakukan Request Order untuk memesan kembali bahan PAC dan Klorin pada instalasi Ngagel III.

Tabel 23. Kebutuhan dan Jumlah truk PAC Ngagel I

Kebutuhan dan Jumlah truk PAC Ngagel I				
	Ngagel I			
Bulan	Kebutuhan PAC (Kg)	Jumlah Truk dan Barang (Kg)	Total (Kg)	
September	47569,55	2 24000	48000	
October	46918,40	2 23500	47000	
November	48827,60	2 24500	49000	
December	58224,77	3 20000	60000	

Berdasarkan tabel diatas dapat diketauhi Kebutuhan PAC berkisar antara 46.918,40 Kg hingga 58.224,77 Kg setiap 3 hari. Pengiriman dilakukan dengan 2 truk dan 3 truk untuk bulan Desember dengan total kapasitas yang sedikit melebihi kebutuhan, memastikan pengiriman berjalan efisien.

Tabel 24.Kebutuhan dan Jumlah truk PAC Ngagel II

Kebutunan dan Jumian truk PAC Ngagei II				
	Ngagel II			
		Jumlah		
	Kebutuhan	Truk	Total	
Bulan	PAC (Kg)	dan	(Kg)	
	TAC (Ng)	Barang	(IXg)	
		(Kg)		
Santambar	21088,39	1	21500	
September		21500		
October	23944,00	1	24000	
October		24000		
November	24874,00	1	25000	
November		25000		
ъ .	25420,00	1	25500	
December		25500		

Berdasarkan tabel diatas dapat diketauhi Kebutuhan PAC berkisar antara 21.088,39 Kg hingga 25.420,00 Kg setiap 3 hari. Pengiriman dilakukan dengan 1 truk dengan total kapasitas yang sedikit melebihi kebutuhan untuk memastikan pengiriman berjalan efisien.

Tabel 25.Kebutuhan dan Jumlah truk PAC Ngagel III

1100000	an adii bannan tran	TTTO TIGUE	71 111
Ngagel III			
Bulan	Kebutuhan PAC (Kg)	Jumlah Truk dan Barang (Kg)	Total (Kg)
September	42757,40	2	43000
		21500	
October	39792,90	2	40000
Octobel		20000	
November	49561,10	2	50000
		25000	
December	58817,03	3	60000
		20000	
Rordocarkon	tabal diatas	donat	dikatanhi

Berdasarkan tabel diatas dapat diketauhi Kebutuhan PAC berkisar antara 39.792,90 Kg hingga 58.817,03 Kg setiap 3 hari. Pengiriman dilakukan dengan 2 truk dan 3 truk untuk bulan Desember dengan total kapasitas yang sedikit melebihi kebutuhan untuk memastikan pengiriman berjalan efisien.

Tabel 26.

Kebutuhan dan Jumlah tabung Chlor Ngagel I			
Ngagel I			
Bulan	Kebutuhan Chlor (Kg)	Jumlah Tabung dan Berat (Kg)	Total (Kg)
September	3611,77	3 1200	3600
October	3682,23	3 1250	3750
November	3170,30	2 1600	3200
December	2921,03	2 1500	3000

Berdasarkan tabel diatas dapat disimpulkan Kebutuhan Chlor per bulan berkisar antara 2.921,03 Kg hingga 3.682,23 Kg. Pengiriman dilakukan dengan 2 hingga 3 tabung setiap 7 hari, masing-masing berkapasitas 1.200 hingga 1.600 Kg, dengan total kapasitas pengiriman sedikit di atas kebutuhan.

Tabel 27.Kebutuhan dan Jumlah tabung Chlor Ngagel II.

Kebutuhan dan Jumlah tabung Chlor Ngagel II			
Ngagel II			
Bulan	Kebutuhan Chlor (Kg)	Jumlah Tabung dan Berat (Kg)	Total (Kg)
September	1531,06	1	1600
		1600	
October	1793,23	2	1800
		900	
November	1604,47	1	1600
		1600	
December	1410,71	1	1400
		1400	

Berdasarkan tabel diatas dapat disimpulkan Kebutuhan Chlor per bulan berkisar antara 1410,71 Kg hingga 1793,23 Kg. Pengiriman dilakukan dengan 1 sampai 2 tabung setiap 7 hari, masing-masing berkapasitas 900 hingga 1.600 Kg, dengan total kapasitas pengiriman sedikit di atas kebutuhan.

Tabel 28.Kebutuhan dan Jumlah tabung Chlor Ngagel III

		0 0	
	Ngagel II	II	
Bulan	Kebutuhan Chlor (Kg)	Jumlah Tabung dan	Total (Kg)

	Berat		
		(Kg)	
September	5028,48	4	5200
September		1300	
October	5230,40	4	5400
October		1350	
November	4858,93	4	5000
November		1250	
December	3838,71	3	3900
December		1300	

Berdasarkan tabel diatas dapat disimpulkan Kebutuhan Chlor per bulan berkisar antara 3838,71 Kg hingga 5230,40 Kg. Pengiriman dilakukan dengan 1 sampai 2 tabung setiap 7 hari, masing-masing berkapasitas 1.250 sampai 1.300 Kg, dengan total kapasitas pengiriman sedikit di atas kebutuhan.

4. Simpulan

Kesimpulan analisis data selama satu tahun, kebutuhan bahan baku pengolahan air bersih di IPAM Ngagel sangat dipengaruhi oleh fluktuasi kualitas air baku dari Sungai Surabaya, yang dipengaruhi oleh curah hujan, musim kemarau, serta aktivitas industri dan limbah domestik. Pada musim hujan, kadar kekeruhan dan bahan organik meningkat, sehingga penggunaan koagulan dan flokulan perlu disesuaikan untuk mencapai efisiensi optimal.

Berdasarkan analisis data harian tahun 2024, kebutuhan bahan baku pengolahan air bersih di IPAM Ngagel sangat dipengaruhi oleh fluktuasi kualitas air baku Sungai Surabaya yang dipengaruhi oleh musim, curah hujan, dan aktivitas antropogenik. Produksi harian dari tiga unit instalasi Ngagel I, II, dan III berkisar antara 940,56 sampai 1.819,24 Liter per detik dengan rata-rata total 4.480,03 Liter per detik. Dosis PAC tertinggi terjadi pada musim hujan sebesar 25,28 sampai 114,55 miligram per liter dan dosis klorin memuncak di akhir musim kemarau sebesar 0,96 sampai 5,72 miligram per liter.

Total kebutuhan minimum PAC untuk ketiga instalasi mencapai 11.709,02 Kg, sedangkan klorin sebesar 468,36 Kg. Sedangkan total kebutuhan maksimum PAC untuk ketiga instalasi mencapai 53.861,47 Kg, sedangkan klorin sebesar 2.810,16 Kg. Perhitungan dari reorder point dan safety stock untuk Ngagel I memiliki kebutuhan sebesar 18.480 Kg PAC dan 686 Kg klorin. Kemudian Ngagel II memiliki kebutuhan sebesar 7.840 Kg PAC dan 288 Kg klorin. Sedangkan Ngagel III memiliki kebutuhan sebesar 19.012,5 Kg PAC dan 840 Kg klorin. Berdasarkan hasil perhitungan kebutuhan PAC selama periode 3 hari dan Klorin selama periode 7 hari pada bulan

September, Oktober, November, dan Desember tahun 2025. Ngagel I untuk PAC memiliki kebutuhan sebesar 47.000 hingga 60.000 Kg, sedangkan Klorin memiliki kebutuhan sebesar 3.000 hingga 3.750 Kg. Ngagel II untuk PAC memiliki kebutuhan sebesar 21.500 hingga 25.500 Kg, sedangkan Klorin memiliki kebutuhan sebesar 1.400 hingga 1.600 Kg. Ngagel III untuk PAC memiliki kebutuhan sebesar 40.000 hingga 60.000 Kg, sedangkan Klorin memiliki kebutuhan sebesar 3.900 hingga 5.400 Kg.

Sistem operasional IPAM Ngagel masih menunjukkan ketahanan terhadap fluktuasi kualitas air, namun inovasi lebih lanjut diperlukan untuk meningkatkan efisiensi berkelanjutan. Implementasi sistem monitoring digital, evaluasi berkala terhadap penggunaan bahan kimia, pelatihan teknis operator, serta penelitian teknologi alternatif seperti ozonisasi dan filtrasi membran menjadi langkah strategis yang direkomendasikan untuk peningkatan kualitas pengolahan air bersih.

Daftar Pustaka

- [1] Rasidi H, Mulyanda D, Karimuna SR, Hamka MS, Sumarlin, Ningtyas R, et al. Air Bersih Gratis. Widina Media Utama. 2023. 5–24 p.
- [2] Peraturan Gubernur Jawa Timur Nomor 32. Penetapan Kelas Air Pada Wilayah Sungai Baru - Bajulmati, Wilayah Sungai Pekalen -Sampean, Wilayah Sungai Bondoyudo -Bedadung, Wilayah Sungai Welang - Rejoso Dan Wilayah Sungai Madura – Bawean. 2013. 1–6 P.
- [3] Kurniawan H. Perbandingan Penggunaan Poli Aluminium Klorida (PAC) dan Tawas

- Terhadap Turbiditas dan Kandungan Mangan (Mn) Pada Air Baku Di Instalasi Pengolahan Air (IPA) PDAM Tirtanadi Hamparan Perak. [Internet]. medan; 2017. Available from: https://repositori.usu.ac.id/handle/12345678 9/3608
- [4] Ramadhani S, Sutanhaji AT, Widiatmono R. Perbandingan Efektivitas Tepung Biji Kelor (Moringa oleifera Lamk), Poly Aluminium Chloride (PAC), dan Tawas sebagai Koagulan untuk Air Jernih Effectiveness Comparison of Moringa Seed Flour (Moringa oleifera lamk), Poly Aluminium Chloride (PAC), a. 2013;1(3):186–93.
- [5] Sumantri A. Kesehatan Lingkungan dan Perspektif Islam. 2010.
- [6] Rifa'i J. Pemeriksaan Kualitas Air Bersih dengan Koagulan Alum dan PAC di IPA Jurug PDAM kota Surakarta [Internet]. Program D-III Teknik Sipil Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas Maret Surakarta. 2017. 1–56 p. Available from:
 - https://core.ac.uk/download/pdf/12348523. pdf
- [7] Kasmir & Jakfar. Studi Kelayakan Bisnis: (Edisi Revisi). Revisi. Jakarta: Kencana Prenada Media Group; 2015.
- [8] Rofiq A, Oetari O, Widodo GP. Analisis Pengendalian Persediaan Obat Dengan Metode ABC, VEN dan EOQ di Rumah Sakit Bhayangkara Kediri. JPSCR J Pharm Sci Clin Res. 2020;5(2):97.