Klasifikasi Jenis Jerawat Berdasarkan Citra Menggunakan Convolutional Neural Network dengan Arsitektur MobileNetV2

  • Virna Dalira Br Sebayang Universitas Udayana
  • I Gusti Ngurah Lanang Wijaya Kusuma Universitas Udayana
Keywords: Klasifikasi Jerawat, Convolutional Neural Network, MobileNetV2, Transfer Learning, Computer Vision

Abstract

Jerawat merupakan permasalahan kulit yang kerap dihadapi remaja hingga orang dewasa secara global, di mana setiap jenis acne memerlukan penanganan yang spesifik. Metode yang diusulkan dalam penelitian ini mengklasifikasikan lima jenis jerawat menggunakan Arsitektur Convolutional Neural Network. Penelitian ini mengeksplorasi tiga skenario pembagian dataset berbeda: 70/30,80/20,90/10 untuk mengevaluasi kinerja dan generalisasi model. Metodologi mengadopsi arsitektur MobileNetV2 dengan transfer learning, yang terdiri dari lapisan termasuk MobileNetV2 sebagai model dasar, Global Average Pooling, Flatten, Dense Layer, Dropout, dan klasifikasi Softmax. Total dataset terdiri dari 350 gambar yang mewakili lima jenis jerawat: Acne Fulminans, Acne Nodules, Papule, Pustule, dan Fungal Acne, dengan 70 sampel per kelas. K-fold cross-validation digunakan untuk menilai performa model pada berbagai pembagian data. Hasil eksperimen menunjukkan kinerja model yang bervariasi di berbagai skenario, dengan akurasi klasifikasi berkisar dari 60% hingga 89% pada pelatihan dan 51% hingga 80% pada pengujian. Sistem klasifikasi CNN menunjukkan tingkat kinerja 89% untuk pelatihan dan 80% untuk pengujian. Skenario ketiga (pembagian 90/10) menunjukkan performa superior yaitu pada Fold-5, mencapai akurasi pengujian tertinggi sebesar 89% untuk pelatihan dan 80% akurasi pengujian. Tantangan dalam penelitian ini meliputi pengelolaan variasi pencahayaan gambar, kualitas gambar, dan keterbatasan data. Hasil menunjukkan bahwa arsitektur yang diusulkan dapat mengklasifikasikan jenis jerawat dengan tingkat akurasi yang cukup baik, meskipun masih terdapat ruang untuk perbaikan dalam generalisasi model.

Downloads

Download data is not yet available.

References

A. H. S. Heng and F. T. Chew, “Systematic review of the epidemiology of acne vulgaris,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-62715-3.

J. Yang, H. Yang, A. Xu, and L. He, “A Review of Advancement on Influencing Factors of Acne: An Emphasis on Environment Characteristics,” Sep. 17, 2020, Frontiers Media S.A. doi: 10.3389/fpubh.2020.00450.

M. A. Kayıran et al., “Use of Complementary and Alternative Medicine among Patients with Acne Vulgaris and Factors Perceived to Trigger the Disease,” Indian J Dermatol, vol. 67, no. 3, p. 311, May 2022, doi: 10.4103/ijd.ijd_745_21.

A. Alqahtani, W. I. Alsaab, and B. Altulahi, “Psychological Impact of Acne Vulgaris on the Young Saudi Population,” Cureus, Dec. 2021, doi: 10.7759/cureus.20509.

K. A. Habeshian and B. A. Cohen, “Current issues in the treatment of acne vulgaris,” Pediatrics, vol. 145, no. 2, May 2020, doi: 10.1542/PEDS.2019-2056L.

K. Tayel, M. Attia, N. Agamia, and N. Fadl, “Acne vulgaris: prevalence, severity, and impact on quality of life and self-esteem among Egyptian adolescents,” Journal of the Egyptian Public Health Association, vol. 95, no. 1, Dec. 2020, doi: 10.1186/s42506-020-00056-9.

S. Voidazan, R. Toth, and T. Varo, “Factors Involved in the Pathogenesis of Acne and Its Psycho-Social Impact,” Acta Marisiensis - Seria Medica, vol. 66, no. 1, pp. 15–18, Mar. 2020, doi: 10.2478/amma-2020-0001.

Z. Rashid et al., “ASSESSMENT OF PSYCHO-SOCIAL IMPACT OF ACNE AMONG YOUNG ADULTS - A CROSS SECTIONAL STUDY AT A TERTIARY CARE HOSPITAL OF RAWALPINDI,” PAFMJ, vol. 71, no. 4, pp. 1171–74, Aug. 2021, doi: 10.51253/pafmj.v71i4.3906.

H. J. Kim and Y. H. Kim, “Exploring Acne Treatments: From Pathophysiological Mechanisms to Emerging Therapies,” Int J Mol Sci, vol. 25, no. 10, p. 5302, May 2024, doi: 10.3390/ijms25105302.

D. R. Sarvamangala and R. V. Kulkarni, “Convolutional neural networks in medical image understanding: a survey,” Evol Intell, vol. 15, no. 1, pp. 1–22, Mar. 2022, doi: 10.1007/s12065-020-00540-3.

N. Nyoman, C. Sumartha, G. Pasek, S. Wijaya, F. Bimantoro, and G. Satya Nugraha, “Klasifikasi Citra Lubang Pada Permukaan Jalan Beraspal dengan Metode Convolutional Neural Networks Potholes Recogniton on Paved Road Surfaces using Convolutional Neural Networks.” [Online]. Available: http://jcosine.if.unram.ac.id/

D. Anggriandi, E. Utami, and D. Ariatmanto, “Comparative Analysis of CNN and CNN-SVM Methods For Classification Types of Human Skin Disease,” sinkron, vol. 8, no. 4, pp. 2168–2178, Oct. 2023, doi: 10.33395/sinkron.v8i4.12831.

R. Rianto, D. Risdho Listianto, U. Teknologi Yogyakarta Jl Siliwangi Jl Ring Road Utara, and D. Istimewa Yogyakarta, “Convolutional Neural Network untuk mengklasifikasi tingkat keparahan jerawat,” AITI: Jurnal Teknologi Informasi, vol. 20, no. Agustus, pp. 167–176, 2023, [Online]. Available: www.kaggle.com

R. L. Hasanah, Y. Rianto, and D. Riana, “Identification of Acne Vulgaris Type in Facial Acne Images Using GLCM Feature Extraction and Extreme Learning Machine Algorithm,” vol. 15, no. 2, pp. 204–214, 2022, doi: 10.21107/rekayasa.v15i2.141580.

T. Shanthi, R. S. Sabeenian, and R. Anand, “Automatic diagnosis of skin diseases using convolution neural network,” Microprocess Microsyst, vol. 76, Jul. 2020, doi: 10.1016/j.micpro.2020.103074.

T. A. Rimi, N. Sultana, and Md. F. Ahmed Foysal, “Derm-NN: Skin Diseases Detection Using Convolutional Neural Network,” in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, May 2020, pp. 1205–1209. doi: 10.1109/ICICCS48265.2020.9120925.

S. Ahla Amania, S. Mulyono, S. Farisa Chaerul Haviana, and I. Sultan Agung, “KLASIFIKASI JENIS JERAWAT WAJAH MENGGUNAKAN ARSITEKTUR INCEPTION V3”.

H. Mukhtar, F. Alfanico, H. Fu’adah Amran, F. Handayani, and R. Medikawati Taufiq, “Deep Learning Untuk Klasifikasi Kematangan Buah Mangrove Berdasarkan Warna,” JURNAL FASILKOM, vol. 13, no. 3, pp. 563–569, Dec. 2023, doi: 10.37859/jf.v13i3.6292.

C. Garbin, X. Zhu, and O. Marques, “Dropout vs. batch normalization: an empirical study of their impact to deep learning,” Multimed Tools Appl, vol. 79, no. 19–20, pp. 12777–12815, May 2020, doi: 10.1007/s11042-019-08453-9.

P. N. Srinivasu, J. G. Sivasai, M. F. Ijaz, A. K. Bhoi, W. Kim, and J. J. Kang, “Classification of skin disease using deep learning neural networks with mobilenet v2 and lstm,” Sensors, vol. 21, no. 8, Apr. 2021, doi: 10.3390/s21082852.

S. Mohapatra, N. V. S. Abhishek, D. Bardhan, A. A. Ghosh, and S. Mohanty, “Comparison of MobileNet and ResNet CNN Architectures in the CNN‐Based Skin Cancer Classifier Model,” in Machine Learning for Healthcare Applications, Wiley, 2021, pp. 169–186. doi: 10.1002/9781119792611.ch11.

D. Cindy Agustin, M. Alfan Rosid, N. Ariyanti, F. Sains dan Teknologi, and U. Muhammadiyah Sidoarjo, “IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK UNTUK DETEKSI KESEGARAN PADA APEL”.

I. P. Kamila, C. A. Sari, E. H. Rachmawanto, and N. R. D. Cahyo, “A Good Evaluation Based on Confusion Matrix for Lung Diseases Classification using Convolutional Neural Networks,” Advance Sustainable Science, Engineering and Technology, vol. 6, no. 1, p. 0240102, Dec. 2023, doi: 10.26877/asset.v6i1.17330.

Published
2024-12-31
Abstract views: 125 , PDF downloads: 126