Optimalisasi Sistem Dompet Kurban Terintegrasi Peternakan Modern Berbasis AI-IoT dengan Teknologi YOLO
Optimalisasi Sistem Dompet Kurban Terintegrasi Peternakan Modern Berbasis AI-IoT dengan Teknologi YOLO
Abstract
Indonesia, sebagai negara dengan populasi Muslim terbesar di dunia, menghadapi tantangan dalam memenuhi kebutuhan hewan kurban yang terus meningkat setiap tahunnya. Penelitian ini bertujuan untuk mengembangkan Dompet Kurban Terintegrasi Peternakan Modern berbasis teknologi AI-IoT dengan algoritma YOLO, guna meningkatkan efisiensi dan mempermudah pengelolaan kurban. Metode penelitian melibatkan tahapan pengumpulan data, analisis kebutuhan, perancangan sistem, simulasi, implementasi, dan evaluasi performa. Sistem yang dikembangkan menyediakan fitur pelacakan hewan secara real-time, estimasi berat hewan menggunakan teknologi citra, dan integrasi pembayaran digital. Hasil pengujian menunjukkan bahwa waktu pengukuran berat sapi dapat dipangkas dari 60 detik menjadi rata-rata 2,1 detik dengan akurasi yang hampir setara metode tradisional. Selain itu, penerapan IoT berhasil menurunkan biaya operasional peternakan hingga 30%. Kesimpulannya, teknologi AI-IoT menawarkan solusi inovatif untuk mendukung efisiensi peternakan sekaligus mempermudah masyarakat dalam menabung dan melaksanakan kurban secara transparan dan efisien
Downloads
References
Kemendagri, 2024. Agregat Penduduk Berdasarkan Agama,[Online](Update 19 Feb 2024) Tersedia di : https://e-database.kemendagri.go.id/kemendagri/dataset/1203/tabel-data. [Accessed 2 November 2024]
Zahara, A., & Nurwani. (2023). Analisis Akuntabilitas Dan Transparansi Dalam Pengelolaan Zakat Infaq Dan Dana Sedekah Dompet Dhuafa Waspada Medan. Ekonomi Bisnis Manajemen Dan Akuntansi (EBMA), 4(Psak 109), 1263–1278. https://jurnal.ulb.ac.id/index.php/ebma/index
Zaenuddin, A., & Mulyono, T. (2024). Design and Building of a Breeding House for IoT-based Goat Farming. 581–597.
Rinata, V., Witjoro, A., Jalaluddin, A., Amrilah, M. S., & Mardatillah, I. P. (2022). Profil Inkubasi Bisnis Peternakan Kambing Berbasis Smart-Warehouse Terkonsep Plecs Sebagai Strategi Optimalisasi Potensi Bisnis Di Rural Area. In Prosiding Seminar Nasional Ekonomi Pembangunan (Vol. 2, No. 1, pp. 76-86).
Mais, R. G., & Abidin, Z. (2021). Supply Chain Management of Kurban Cattles in “Tebar Hewan Kurban” Program, Dompet Dhuafa Republika. Jurnal Reviu Akuntansi Dan Keuangan, 11(3), 586–598. https://doi.org/10.22219/jrak.v11i3.17859
Susanty, A., Sutrimo, W. H. W. M., & Saptadi, S. (2021). Measuring the Sustainability Broiler Chicken Supply Chain Using Rapid Appraisal for Poultry Method: A Comparison between One Tier and Two-Tier Contract Farming System. 2021 IEEE 8th International Conference on Industrial Engineering and Applications, ICIEA 2021, 226–230. https://doi.org/10.1109/ICIEA52957.2021.9436709
Abidin, Z., Najmudin, Iqbal, & Sudarmi, N. (2022). Rancangan Manajemen Rantai Pasok Sapi Potong untuk Bisnis Sosial yang Berkelanjutan, Studi Kasus Program “Tebar Hewan Kurban”, “Dompet Dhuafa Republika.” Serambi, 4(2), 165–176. https://doi.org/10.36407/serambi.v4i2.780
Teng, S., & Khong, K. W. (2021). Examining actual consumer usage of E-wallet: A case study of big data analytics. Computers in Human Behavior, 121, 106778.
Kurniawan, G., & Jamaaluddin, J. (2023). Dispenser Pintar dengan Pembayaran Tanpa Uang Tunai. Innovative Technologica: Methodical Research Journal, 2(3), 15-15.
Maulidah, A. R., Astuti, R. P., Nisa, K., Erlangga, W., & Hambarwati, E. (2024). Perkembangan Sistem Pembayaran Digital: Pada Era Revolusi Industri 4.0 Di Indonesia. Jurnal Ekonomi Dan Bisnis Digital, 1(4), 798-803.
Imamah, N. T., Pratama, A., & Faroqi, A. (2024). Evaluasi Faktor-Faktor Penerimaan Aplikasi SeaBank Menggunakan Model UTAUT2. 14(2), 309–317.
Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2021). A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066–1073. https://doi.org/10.1016/j.procs.2022.01.135
Wijanarko, R. G., Pradana, A. I., & Hartanti, D. (2024). IMPLEMENTASI DETEKSI DRONE MENGGUNAKAN YOLO ( You Only Look Once ). 14(2), 437–442.
Yu, Z., Liu, Y., Yu, S., Wang, R., Song, Z., Yan, Y., Li, F., Wang, Z., & Tian, F. (2022). Automatic Detection Method of Dairy Cow Feeding Behaviour Based on YOLO Improved Model and Edge Computing. Sensors, 22(9). https://doi.org/10.3390/s22093271
Rosero-Montalvo, P. D., Gordillo-Gordillo, C. A., & Hernandez, W. (2023). Smart farming robot for detecting environmental conditions in a greenhouse. IEEE Access, 11, 57843-57853.
Copyright (c) 2024 Erwin Apriliyanto (Author); Dimas Fajar Nugroho, Wakhid Kurniawan, Romi Iriandi Putra, Muhammadi Yusuf Ariyadi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright Notice
An author who publishes in the Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.

