Implementation Of Machine Learning To Identify Types Of Waste Using CNN Algorithm

  • Matsnan Haqqi Universitas Amikom Purwokerto
  • Lailatur Rochmah Universitas Amikom Purwokerto
  • Arisanti Dwi Safitri Universitas Amikom Purwokerto
  • Rizki Adhi Pratama Universitas Amikom Purwokerto
  • Tarwoto Universitas Amikom Purwokerto
Keywords: convolutional neural network, garbage types, classification

Abstract

Waste management remains a significant challenge globally, particularly in Indonesia, where the annual waste generation reached 24.67 million tonnes in 2021, with only 50.43% properly managed. To address the issue of mixed organic and inorganic waste and the lack of public awareness regarding waste separation, this study applied machine learning, specifically the Convolutional Neural Network (CNN) algorithm, to classify waste types. The research aimed to develop an effective automated waste classification model to improve waste management processes. The research involved collecting a dataset of 2,848 images representing six waste categories: glass, cardboard, paper, metal, organic, and plastic. Preprocessing techniques such as cropping, noise reduction with Gaussian filters, and data augmentation were applied to enhance data quality. The dataset was divided into training, validation, and testing subsets in a 70:20:10 ratio. The CNN model employed feature extraction through convolution, activation, and pooling layers, followed by classification using a fully connected layer and a softmax function. Model performance was evaluated using accuracy, precision, recall, and F1-score metrics. The model achieved an overall accuracy of 95%, with an average precision, recall, and F1-score of 0.95 across all classes. These results demonstrate the CNN model’s ability to reliably classify waste types. Compared to previous studies, this research achieved higher accuracy through the use of enhanced preprocessing and CNN optimization. This study highlights the potential of CNN-based models for automated waste classification, contributing to sustainable waste management practices and fostering environmental awareness in the future research.

Downloads

Download data is not yet available.

References

A. Ibnul Rasidi, Y. A. H. Pasaribu, A. Ziqri, and F. D. Adhinata, “Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 1, Apr. 2022, doi: 10.28932/jutisi.v8i1.4314.

R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “IMPLEMENTASI ARSITEKTUR XCEPTION PADA MODEL MACHINE LEARNING KLASIFIKASI SAMPAH ANORGANIK,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 2, Apr. 2023, doi: 10.23960/jitet.v11i2.3034.

J. Homepage, S. Sahibu, I. Taufik, and P. Studi Sistem Komputer, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Implementation of the Convolutional Neural Network Algorithm for Classifying Types of Organic and Non-Organic Waste Implementasi Algoritma Convolutional Neural Network untuk Klasifikasi Jenis Sampah Organik dan Non Organik,” vol. 4, no. 3, pp. 840–852, 2024, doi: 10.57152/malcom.v7i2.1346.

A. Marzuki, A. Zaky, A. Cahayani Adha, T. Mohammad Yoshandi, U. Awal Bros, and K. Pekanbaru, “JURNAL MEDIA INFORMATIKA [JUMIN] Analisis Model Klasifikasi Sampah Botol Berbasis Image Processing Dan Machine Learning Dalam Rancang Bangun Aplikasi Penukaran Sampah Botol Otomatis,” 2024.

H. Mukhtar et al., “Deep Learning Untuk Klasifikasi Kematangan Buah Mangrove Berdasarkan Warna”.

J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, Aug. 2020, doi: 10.28932/jutisi.v6i2.2688.

“8 ANALISA PERBANDINGAN METODE FILTER GAUSSIAN, MEAN DANMEDIAN TERHADAP REDUKSI NOISE”.

R. Av Venkatesan and B. Li, “Convolutional Neural Networks in Visual Computin.”

A. Darvishy, H. Ibrahim, F. Sidi, and A. Mustapha, “HYPNER: A Hybrid Approach for Personalized News Recommendation,” IEEE Access, vol. 8, pp. 46877–46894, 2020, doi: 10.1109/ACCESS.2020.2978505.

I. Muhammad Erwin, E. Prakasa, and B. Sugiarto, “KAYU7NET: IDENTIFIKASI DAN EVALUASI F-MEASURE CITRA KAYU BERBASIS DEEP CONVOLUTION NEURAL NETWORK (DCNN)”, doi: 10.25126/jtiik.

O. D. S. Sunanto and P. H. Utomo, “Implementasi Deep Learning Dengan Convolutional Neural Network Untuk Klasifikasi Gambar Sampah Organik Dan Anorganik,” Pattimura Proceeding Conf. Sci. Technol., vol. 1, no. 2, pp. 335–340, 2022

D. C. Agustin, M. A. Rosid, and N. Ariyanti, “Implementasi Convolutional Neural Network Untuk Deteksi Kesegaran Pada Apel,” J. Fasilkom, vol. 13, no. 02, pp. 145–150, 2023.

Published
2024-12-31
Abstract views: 89 , PDF downloads: 64