Penerapan Support Vector Machine dan Random Forest Classifier Untuk Klasifikasi Tingkat Obesitas

  • Siti Andini Utiarahman Universitas Ichsan Gorontalo
  • Andi Mulawati Mas Pratama Universitas Ichsan Gorontalo
Keywords: klasifikasi, machine learning, obesitas, random forest, support vector machine

Abstract

Obesitas telah menjadi masalah kesehatan global yang semakin mengkhawatirkan, dengan 2.5 miliar penduduk dewasa mengalami kelebihan berat badan dan 890 juta teridentifikasi obesitas pada tahun 2022. Penelitian ini bertujuan untuk mengembangkan dan membandingkan model klasifikasi tingkat obesitas menggunakan algoritma Support Vector Machine (SVM) dan Random Forest, serta menganalisis faktor-faktor yang mempengaruhi obesitas. Data yang digunakan berasal dari dataset publik yang terdiri dari 1610 records dengan 15 variabel yang mencakup karakteristik demografis, faktor keluarga, pola makan dan gaya hidup. Metodologi penelitian meliputi tahap pra-pemrosesan data, pembagian dataset dengan rasio 70:30 untuk data training dan testing, serta evaluasi performa menggunakan metrik evaluasi, presisi, recall dan f1-score. Hasil penelitian menunjukkan bahwa Random Forest menghasilkan performa yang lebih unggul dengan akurasi 94%, meningkat 3% dari SVM yang mencapai akurasi 91.01%. Random Forest menunjukkan konsistensi yang lebih baik dalam klasifikasi seluruh kelas, khususnya mencapai hasil optimal untuk kelas 4 dengan presisi 100% dan recall 99%. Analisis faktor menunjukkan bahwa gaya hidup dan pola makan memiliki pengaruh signifikan terhadap tingkat obesitas. Model yang dikembangkan dapat diimplementasikan sebagai alat bantu dalam sistem kesehatan untuk memprediksi dan mengklasifikasikan tingkat obesitas secara akurat, memungkinkan intervensi yang lebih tepat sasaran berdasarkan faktor resiko yang terindentifikasi

Downloads

Download data is not yet available.

References

M. J. Gerl et al., “Machine learning of human plasma lipidomes for obesity estimation in a large population cohort,” PLoS Biol, vol. 17, no. 10, 2019, doi: 10.1371/journal.pbio.3000443.

World Health Organization, “Obesity and overweight,” https://www.who.int. Accessed: May 10, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

B. R. K. Salim, D. M. Wihandani, and N. N. A. Dewi, “Obesitas sebagai faktor risiko terjadinya peningkatan kadar trigliserida dalam darah: tinjauan pustaka,” Intisari Sains Medis, vol. 12, no. 2, pp. 519–523, Jul. 2021, doi: 10.15562/ism.v12i2.1031.

K. Jindal, N. Baliyan, and P. S. Rana, “Obesity prediction using ensemble machine learning approaches,” in Advances in Intelligent Systems and Computing, Springer Verlag, 2018, pp. 355–362. doi: 10.1007/978-981-10-8636-6_37.

F. Ferdowsy, K. S. A. Rahi, M. I. Jabiullah, and M. T. Habib, “A machine learning approach for obesity risk prediction,” Current Research in Behavioral Sciences, vol. 2, Nov. 2021, doi: 10.1016/j.crbeha.2021.100053.

M. Dirik, “Application of machine learning techniques for obesity prediction: a comparative study,” Journal of Complexity in Health Sciences, vol. 6, no. 2, pp. 16–34, Dec. 2023, doi: 10.21595/chs.2023.23193.

R. Kaur, R. Kumar, and M. Gupta, “Predicting risk of obesity and meal planning to reduce the obese in adulthood using artificial intelligence,” Endocrine, vol. 78, no. 3, pp. 458–469, Dec. 2022, doi: 10.1007/s12020-022-03215-4.

F. Musa, F. Basaky, and O. E.O, “Obesity prediction using machine learning techniques,” Journal of Applied Artificial Intelligence, vol. 3, no. 1, pp. 24–33, Jun. 2022, doi: 10.48185/jaai.v3i1.470.

S. Kitis and H. Goker, “Detection of Obesity Stages Using Machine Learning Algorithms,” Anbar Journal of Engineering Sciences, vol. 14, no. 1, pp. 80–88, Apr. 2023, doi: 10.37649/aengs.2023.139350.1045.

F. Ferdowsy, K. S. A. Rahi, M. I. Jabiullah, and M. T. Habib, “A machine learning approach for obesity risk prediction,” Current Research in Behavioral Sciences, vol. 2, Nov. 2021, doi: 10.1016/j.crbeha.2021.100053.

N. Koklu and S. A. Sulak, “Using Artificial Intelligence Techniques for the Analysis of Obesity Status According to the Individuals’ Social and Physical Activities,” Sinop Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 1, pp. 217–239, Jun. 2024, doi: 10.33484/sinopfbd.1445215.

A. Gholamy, V. Kreinovich, and O. Kosheleva, “A Pedagogical Explanation A Pedagogical Explanation Part of the Computer Sciences Commons,” 2018. [Online]. Available: https://scholarworks.utep.edu/cs_techrephttps://scholarworks.utep.edu/cs_techrep/1209

M. Omidvar, A. Zahedi, and H. Bakhshi, “EEG signal processing for epilepsy seizure detection using 5-level Db4 discrete wavelet transform, GA-based feature selection and ANN/SVM classifiers,” J Ambient Intell Humaniz Comput, vol. 12, no. 11, pp. 10395–10403, Nov. 2021, doi: 10.1007/s12652-020-02837-8.

Hidayatunnisa, Kusrini, and Kusnawi, “Perbandingan Kinerja Metode Naive Bayes dan Support Vector Machine dalam Analisis Soal,” JURNAL FASILKOM, vol. 13, no. 2, pp. 173–180, Aug. 2023.

W. Djatmiko, “Perbandingan Naive Bayes dan Random Forest untuk Prediksi Perilaku Peserta Program Rujuk Balik,” JURNAL FASILKOM, vol. 13, pp. 358–367, Dec. 2023.

S. A. Utiarahman, A. Mulawati, and M. Pratama, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Perbandingan KNN, SVM, Decision Tree dan Regresi Logistik Untuk Klasifikasi Obesitas Multi Kelas,” Media Online), vol. 4, no. 6, pp. 3137–3146, 2024, doi: 10.30865/klik.v4i6.1871.

Published
2024-12-31
Abstract views: 188 , PDF downloads: 128