Identifikasi Pola Konflik Lahan Perkebunan di Lingkungan PTPN Group Berbasis Data Hukum Menggunakan Hierarchical Clustering dengan Algoritma Agglomerative

  • Theresia Wismarini Universitas Stikubank
  • Sri Eniyati Universitas Stikubank
  • Endang Lestariningsih Universitas Stikubank
  • Soelistijadi Soelistijadi Universitas Stikubank
  • Eka Ardhianto Universitas Stikubank
Keywords: konflik lahan, agglomerative clustering, data hukum, data geospasial, data sosioekonomi

Abstract

Konflik lahan perkebunan sangat penting untuk dideteksi secara dini, karena potensi dampaknya terhadap berbagai aspek seperti kesehatan, ekosistem, pertanian, dan jaringan listrik. Penelitian ini bertujuan mengidentifikasi pola konflik lahan perkebunan di lingkungan PTPN Group berbasis data hukum menggunakan teknik Hierarchical Clustering dengan algoritma Agglomerative Clustering. Deteksi dini konflik lahan penting karena dampaknya terhadap kesehatan, ekosistem, pertanian, dan infrastruktur. Studi ini mengolah data hukum dari Mahkamah Agung RI, data geospasial dari OpenStreetMap, dan data sosial-ekonomi dari BPS dan World Bank untuk menganalisis dan mengelompokkan pola konflik. Proses analisis meliputi inisialisasi data, penghitungan jarak, penggabungan klaster, dan visualisasi dendrogram. Hasilnya menunjukkan bahwa algoritma ini efektif dalam mengelompokkan konflik lahan berdasarkan karakteristik populasi dan GDP yang berbeda, membantu memahami hubungan antar kasus hukum. Penelitian ini berkontribusi dengan mengidentifikasi faktor utama pemicu konflik lahan untuk mendukung manajemen lahan berbasis data. Rekomendasi kebijakan publik mencakup penetapan zona prioritas penyelesaian konflik, optimalisasi pengawasan hukum berbasis data, dan peningkatan transparansi dalam tata kelola lahan guna mencegah eskalasi konflik di wilayah PTPN Group.

Downloads

Download data is not yet available.

References

Z. Wang, L. Yi, W. Xu, X. Zheng, S. Xiong, and A. Bao, 2023, Integration of UAV and GF-2 Optical Data for Estimating Aboveground Biomass in Spruce Plantations in Qinghai, China, Sustainability (Switzerland), 15(12) , doi: 10.3390/su15129700.

W. de O. S. Ana et al., 2022, Methodology for Defining Priority Locations for Carrying out a Forest Inventory in Points with Conflict between Urban Tree Planting and the Electricity Grid, Energies (Basel), 15(3), doi: 10.3390/en15030684.

P. R. Rajbangshi and D. Nambiar, 2020, who will stand up for us? the social determinants of health of women tea plantation workers in India, Int J Equity Health, 19(1), doi: 10.1186/s12939-020-1147-3.

Y. Chen and S. Tian, 2020, Feature-level fusion between gaofen-5 and sentinel-1a data for tea plantation mapping, Forests, 11(12), pp. 1–21, doi: 10.3390/f11121357.

J. Kurihara, V. C. Koo, C. W. Guey, Y. P. Lee, and H. Abidin, 2022, Early Detection of Basal Stem Rot Disease in Oil Palm Tree Using Unmanned Aerial Vehicle-Based Hyperspectral Imaging, Remote Sens (Basel), 14(3), doi: 10.3390/rs14030799.

A. R. Cameron, A. Meyer, C. Faverjon, and C. Mackenzie, 2020, Quantification of the sensitivity of early detection surveillance, Transbound Emerg Dis, 67(6), pp. 2532–2543, doi: 10.1111/tbed.13598.

A. Afrizal, O. Hospes, W. Berenschot, A. Dhiaulhaq, R. Adriana, and E. Poetry, 2023, Unequal access to justice: an evaluation of RSPO’s capacity to resolve palm oil conflicts in Indonesia, Agric Human Values, 40(1), pp. 291–304, doi: 10.1007/s10460-022-10360-z.

J. Wang et al., 2023, Recognition of the Interaction Mechanisms between Water and Land Resources Based on an Improved Distributed Hydrological Model, Water (Switzerland), 15(10), doi: 10.3390/w15101946.

N. H. Buitendijk et al., 2022, More grazing, more damage? Assessed yield loss on agricultural grassland relates nonlinearly to goose grazing pressure, Journal of Applied Ecology, vol. 59, no. 12, pp. 2878–2889, doi: 10.1111/1365-2664.14306.

C. Luo, B. Zhang, J. Liu, X. Wang, F. Han, and J. Zhou, 2020, Effects of different ages of Robinia pseudoacacia plantations on soil physiochemical properties and microbial communities, Sustainability (Switzerland), 12(21), pp. 1–18, doi: 10.3390/su12219161.

W. Xiang et al., 2022, Spatial Representativeness of Eddy Covariance Measurements in a Coniferous Plantation Mixed with Cropland in Southeastern China, Remote Sens (Basel), 14(19), doi: 10.3390/rs14195022.

K. Moodley, P. V. Hernandez-Serrano, A. J. Zaveri, M. G. H. Schaper, M. Dumontier, and G. Van Dijck, 2020, The Case for a Linked Data Research Engine for Legal Scholars, European Journal of Risk Regulation, 11(1), pp. 70–93, doi: 10.1017/err.2019.51.

N. Berggren and C. Bjørnskov, 2023, Does legal freedom satisfy, European Journal of Law and Economics, 55(1), pp. 1–28, , doi: 10.1007/s10657-022-09753-6.

D. Braun, 2023, I beg to differ: how disagreement is handled in the annotation of legal machine learning data sets, Artif Intell Law (Dordr), doi: 10.1007/s10506-023-09369-4.

G. Bates, I. Cinar, and M. Nalepa, 2019, Award from the Political Organizations and Parties section of APSA. She has published her research in the, Studies in Grammar, Logic and Rhetoric, and Decyzje. Association, 18(1), p. 161, doi: 10.7910/DVN/1HCPSG.

I. Numata, A. J. Elmore, M. A. Cochrane, C. Wang, J. Zhao, and X. Zhang, 2022, Deforestation, plantation-related land cover dynamics and oil palm age-structure change during 1990-2020 in Riau Province, Indonesia, Environmental Research Letters, 17(9), doi: 10.1088/1748-9326/ac8a61.

P. Maring, “The strategy of shifting cultivators in West Kalimantan in adapting to the market economy: empirical evidence behind gaps in interdisciplinary communication.”

A. Fitch et al., 2022, The Coffee Compromise: Is Agricultural Expansion into Tree Plantations a Sustainable Option?,” Sustainability (Switzerland), 14(5), doi: 10.3390/su14053019.

H. Lan, K. Stewart, Z. Sha, Y. Xie, and S. Chang, 2022, Data Gap Filling Using Cloud-Based Distributed Markov Chain Cellular Automata Framework for Land Use and Land Cover Change Analysis: Inner Mongolia as a Case Study, Remote Sens (Basel), 14(3), doi: 10.3390/rs14030445.

D. Braun, 2023, I beg to differ: how disagreement is handled in the annotation of legal machine learning data sets, Artif Intell Law (Dordr), doi: 10.1007/s10506-023-09369-4.

“fs20_A mixed methods approach for measuring topic sensitivity in conservation”.

N. Segura-Alabart, F. Serratosa, S. Gómez, and A. Fernández, 2022, Nonunique UPGMA clusterings of microsatellite markers, Briefings in Bioinformatics, 23(5), doi: 10.1093/bib/bbac312.

Y. Lin and S. Chen, 2020, A Centroid Auto-Fused Hierarchical Fuzzy c-Means Clustering, [Online]. Available: http://arxiv.org/abs/2004.12756

J. Anibal et al., 2022, HAL-X: Scalable hierarchical clustering for rapid and tunable single-cell analysis, PLoS Comput Biol, 18(10), doi: 10.1371/journal.pcbi.1010349.

Z. Liu, Y. Li, L. Yao, X. Wang, and F. Nie, 2021, Agglomerative Neural Networks for Multi-View Clustering.

A. A. Shastri, K. Ahuja, M. B. Ratnaparkhe, and Y. Busnel, 2021, Probabilistically sampled and spectrally clustered plant species using phenotypic characteristics, PeerJ, 9, doi: 10.7717/peerj.11927.

J. Xu et al., 2021, Effects of randomized management on the forest distribution patterns of Larix Kaempferi plantation in Xiaolongshan, Gansu province, China, Forests, 12(8), doi: 10.3390/f12080981

Published
2024-12-10
Abstract views: 133 , pdf downloads: 89