Peningkatan Performa Model Gradient Boosting dalam Klasifikasi Stroke Melalui Optimasi Grid Search

  • Susi Handayani Universitas Lancang Kuning
  • Fajrizal Universitas Lancang Kuning
  • Taslim Universitas Lancang Kuning
  • Dafwen Toresa Universitas Lancang Kuning
  • Syahril Universitas Muhammadiyah Riau
Keywords: hyperparamater, optimasi, grid search, stroke, klasifikasi

Abstract

Studi ini menyelidiki pengaruh optimasi hyperparameter dengan grid search pada model XGBoost dan LightGBM dalam klasifikasi stroke. Hasil penelitian menunjukkan bahwa optimasi parameter secara signifikan meningkatkan performa kedua model, terutama dalam akurasi, precision, F1 Score, dan ROC-AUC Score. Pada model XGBoost, peningkatan terutama terlihat akurasi dan precision, sementara LightGBM menunjukkan peningkatan merata di semua metrik evaluasi. Temuan ini menggarisbawahi pentingnya optimasi hyperparameter dalam membangun model klasifikasi yang efektif untuk memprediksi risiko stroke dengan lebih akurat dan dapat diandalkan. Penemuan ini dapat berkontribusi dalam pemahaman lebih lanjut tentang faktor-faktor yang mempengaruhi stroke serta mendukung penanganan yang lebih tepat dan efektif dalam praktik klinis

Downloads

Download data is not yet available.

References

S. J. X. Murphy and D. J. Werring, “Stroke: causes and clinical features,” Medicine (Baltimore)., vol. 48, no. 9, pp. 561–566, 2020, doi: https://doi.org/10.1016/j.mpmed.2020.06.002.

V. L. Feigin et al., “World Stroke Organization ( WSO ): Global Stroke Fact Sheet 2022,” vol. 17, no. X, 2022, doi: 10.1177/17474930211065917.

P. Govindarajan, R. K. Soundarapandian, A. H. Gandomi, R. Patan, P. Jayaraman, and R. Manikandan, “Classification of stroke disease using machine learning algorithms,” Neural Comput. Appl., vol. 32, no. 3, pp. 817–828, 2020, doi: 10.1007/s00521-019-04041-y.

K. Kandukuri and A. Sandhya, “Heart Stroke Detection Using KNN Algorithm,” ECS Trans., vol. 107, no. 1, p. 18385, Apr. 2022, doi: 10.1149/10701.18385ecst.

L. I. Santos et al., “Decision tree and artificial immune systems for stroke prediction in imbalanced data,” Expert Syst. Appl., vol. 191, p. 116221, 2022, doi: https://doi.org/10.1016/j.eswa.2021.116221.

A. Mohammed and R. Kora, “A comprehensive review on ensemble deep learning: Opportunities and challenges,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 2, pp. 757–774, 2023, doi: https://doi.org/10.1016/j.jksuci.2023.01.014.

Y. Zhang and A. Haghani, “A gradient boosting method to improve travel time prediction,” Transp. Res. Part C Emerg. Technol., vol. 58, pp. 308–324, 2015, doi: https://doi.org/10.1016/j.trc.2015.02.019.

C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, “A comparative analysis of gradient boosting algorithms,” Artif. Intell. Rev., vol. 54, no. 3, pp. 1937–1967, 2021, doi: 10.1007/s10462-020-09896-5.

M. M. El-Halwagi, Ed., “Overview of optimization,” in Process Integration, vol. 7, in Process Systems Engineering, vol. 7. , Academic Press, 2006, pp. 285–314. doi: https://doi.org/10.1016/S1874-5970(06)80012-3.

A. Alridha, F. A. Wahbi, and M. K. Kadhim, “Training analysis of optimization models in machine learning,” Int. J. Nonlinear Anal. Appl., vol. 12, no. 2, pp. 1453–1461, 2021, doi: 10.22075/ijnaa.2021.5261.

B. H. Shekar and G. Dagnew, “Grid Search-Based Hyperparameter Tuning and Classification of Microarray Cancer Data,” in 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), 2019, pp. 1–8. doi: 10.1109/ICACCP.2019.8882943.

A. H. H. F. Miko Trenggono Hidayatullah, Masduki Asbari, Muhammad Iqbal Ibrahim, “Diabetes Prediction Using Binary Grey.pdf,” Int. J. Comput. 21(4), 489-494. https//doi.org/10.47839/ijc.21.4.2785, 2022.

G. Sailasya and G. L. A. Kumari, “Analyzing the Performance.pdf,” 2021.

S. Dev, H. Wang, C. S. Nwosu, N. Jain, B. Veeravalli, and D. John, “A predictive analytics approach for stroke prediction using machine learning and neural networks,” Healthc. Anal., vol. 2, p. 100032, 2022, doi: https://doi.org/10.1016/j.health.2022.100032.

D. Elreedy and A. F. Atiya, “A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance,” Inf. Sci. (Ny)., vol. 505, pp. 32–64, 2019, doi: https://doi.org/10.1016/j.ins.2019.07.070.

R. Firdaus, H. Habibie, and Y. Rizki, “Implementasi Algoritma Random Forest Untuk Klasifikasi Pencemaran Udara di Wilayah Jakarta Berdasarkan Jakarta Open Data,” vol. 14, no. 2, pp. 520–525, 2021.

H. Mukhtar, F. Alfanico, H. Fu’adah Amran, F. Handayani, and R. Medikawati Taufiq, “Deep Learning Untuk Klasifikasi Kematangan Buah Mangrove Berdasarkan Warna,” 2023. doi: 10.37859/jf.v13i3.6292.

Published
2024-12-31
Abstract views: 167 , PDF downloads: 200