Eksperimen Pemodelan dan skenario Skenario Faster R-CNN untuk Penerapan Self Checkout Cashier
Abstract
Penelitian ini bertujuan untuk mengembangkan sistem self-checkout yang efisien dan hemat biaya untuk toko kelontong dengan memanfaatkan teknologi computer vision. Sistem yang diusulkan menggunakan Faster R-CNN, sebuah algoritma deep learning untuk mendeteksi dan mengenali produk secara real-time dari gambar yang diambil oleh kamera. Metode ini menghilangkan kebutuhan akan pemindaian barcode/QR code atau penggunaan tag RFID, sehingga mengurangi biaya operasional secara signifikan. Penelitian ini menggunakan 2.526 foto produk yang terdiri dari 10 kelas produk yang berbeda. Data ini dibagi menjadi data latih (2.026 foto) dan data uji (500 foto). Model Faster R-CNN dilatih menggunakan data latih dan kemudian dievaluasi kinerjanya menggunakan data uji. Hasil evaluasi menunjukkan bahwa model mampu mencapai akurasi hingga 84% ketika mendeteksi satu objek dalam satu frame. Namun, akurasi menurun menjadi 44% untuk tiga objek dan 12% untuk lima objek dalam satu frame. Meskipun terdapat penurunan akurasi pada skenario dengan banyak objek, penelitian ini menunjukkan potensi besar dari teknologi computer vision dalam meningkatkan efisiensi dan pengalaman berbelanja di toko kelontong. Penelitian lebih lanjut diperlukan untuk meningkatkan akurasi model dalam mendeteksi banyak objek secara bersamaan.
Downloads
References
C. Y. T. Chan and D. Petrikat, “Self-Service Technology: Benefits and Challenges,” Journal of Computer Science and Technology Studies, vol. 4, no. 2, pp. 118–127, Nov. 2022, doi: 10.32996/jcsts.2022.4.2.14.
H. Alamoudi, “Examining Retailing Sustainability in the QR Code-Enabled Mobile Payments Context During the COVID-19 Pandemic,” International Journal of Customer Relationship Marketing and Management, vol. 13, no. 1, pp. 1–22, Oct. 2021, doi: 10.4018/IJCRMM.289210.
M. L. Meuter, M. J. Bitner, A. L. Ostrom, and S. W. Brown, “Choosing among Alternative Service Delivery Modes: An Investigation of Customer Trial of Self-Service Technologies,” J Mark, vol. 69, no. 2, pp. 61–83, Apr. 2005, doi: 10.1509/jmkg.69.2.61.60759.
X. Guan, L. Xie, W.-G. Shen, and T.-C. Huan, “Are you a tech-savvy person? Exploring factors influencing customers using self-service technology,” Technol Soc, vol. 65, p. 101564, May 2021, doi: 10.1016/j.techsoc.2021.101564.
N. Jalani, A. Azit, W. K. A. Wan Abd Manan, and M. Mokhtar, “THE INFLUENCE OF SELF-SERVICE EXPERIENCES ON CUSTOMER SATISFACTION,” International Journal of Industrial Management, vol. 17, no. 4, pp. 186–194, Dec. 2023, doi: 10.15282/ijim.17.4.2023.10023.
P. A, V. A, N. K. C, S. R, and K. K, “Automatic Billing Trolley for an Enhanced Supermarket using RFID,” in 2023 7th International Conference on Computing Methodologies and Communication (ICCMC), IEEE, Feb. 2023, pp. 840–844. doi: 10.1109/ICCMC56507.2023.10083555.
M. I. Ali, K. Ghozali, and A. S. Indrawanti, “Otomatisasi Sistem Keranjang Belanja pada Supermarket (Marketplace) Guna Meningkatkan Aspek Efisiensi Alur Perbelanjaan Menggunakan Sensor UHF RFID,” Jurnal Teknik ITS, vol. 12, no. 1, May 2023, doi: 10.12962/J23373539.V12I1.104286.
T. Mannapur, P. Palange, A. Bhavsar, and S. D. Mali, “RFID Technology in Retail: A Study on IoT-Based Shopping Cart System,” International Journal of Advanced Research in Science, Communication and Technology, pp. 265–272, May 2023, doi: 10.48175/IJARSCT-9748.
M. R. Krishna, M. Alifa Firdhos Farheen, and H. Killamsetti, “RFID-Powered Intelligent Shopping Cart: Streamlined Checkout and Automated Billing,” in 2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE), IEEE, Feb. 2024, pp. 345–348. doi: 10.1109/ICWITE59797.2024.10503373.
Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object Detection With Deep Learning: A Review,” IEEE Trans Neural Netw Learn Syst, vol. 30, no. 11, pp. 3212–3232, Nov. 2019, doi: 10.1109/TNNLS.2018.2876865.
O. BOURJA, H. DERROUZ, H. A. ABDELALI, A. MAACH, R. O. H. THAMI, and F. BOURZEIX, “Real Time Vehicle Detection, Tracking, and Inter-vehicle Distance Estimation based on Stereovision and Deep Learning using YOLOv3,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 8, 2021, doi: 10.14569/IJACSA.2021.01208101.
R. Muwardi, J. M. R. Permana, H. Gao, and M. Yunita, “Human Object Detection for Real-Time Camera using Mobilenet-SSD,” Journal of Integrated and Advanced Engineering (JIAE), vol. 3, no. 2, pp. 141–150, Sep. 2023, doi: 10.51662/jiae.v3i2.108.
J. Sobek et al., “MedYOLO: A Medical Image Object Detection Framework,” Journal of Imaging Informatics in Medicine, Jun. 2024, doi: 10.1007/s10278-024-01138-2.
K. Aryasa and A. Rusydi, “Design and Build a Sign Language Detection Application with Tensorflow Object Detection and SSD Mobilenet V2,” in 2023 5th International Conference on Cybernetics and Intelligent System (ICORIS), IEEE, Oct. 2023, pp. 1–5. doi: 10.1109/ICORIS60118.2023.10352247.
M. N. Ardiansyah, P. S. Muttaqin, M. D. Prasetio, and N. Novitasari, “Identifikasi Objek/Produk untuk Proses Stock Taking Barang menggunakan Konsep Object Recognition,” Jurnal Rekayasa Sistem & Industri (JRSI), vol. 8, no. 01, p. 28, Jun. 2021, doi: 10.25124/jrsi.v8i1.455.
J.-Y. Jeon, S.-W. Kang, H.-J. Lee, and J.-S. Kim, “A Retail Object Classification Method Using Multiple Cameras for Vision-Based Unmanned Kiosks,” IEEE Sens J, vol. 22, no. 22, pp. 22200–22209, Nov. 2022, doi: 10.1109/JSEN.2022.3210699.
X. Zhang et al., “Weed Identification in Soybean Seedling Stage Based on Optimized Faster R-CNN Algorithm,” Agriculture, vol. 13, no. 1, p. 175, Jan. 2023, doi: 10.3390/agriculture13010175.
P. Selvam and J. A. S. Koilraj, “A Deep Learning Framework for Grocery Product Detection and Recognition,” Food Anal Methods, vol. 15, no. 12, pp. 3498–3522, Dec. 2022, doi: 10.1007/s12161-022-02384-2.
D. C. Agustin, M. A. Rosid, and N. Ariyanti, “IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK UNTUK DETEKSI KESEGARAN PADA APEL,” JURNAL FASILKOM, vol. 13, no. 02, pp. 145–150, Aug. 2023, doi: 10.37859/jf.v13i02.5175.
H. Mukhtar, F. Alfanico, H. Fu’adah Amran, F. Handayani, and R. Medikawati Taufiq, “Deep Learning Untuk Klasifikasi Kematangan Buah Mangrove Berdasarkan Warna,” JURNAL FASILKOM, vol. 13, no. 3, pp. 563–569, Dec. 2023, doi: 10.37859/jf.v13i3.6292.
M. Ariyanto and P. D. Purnamasari, “Object Detection System for Self-Checkout Cashier System Based on Faster Region-Based Convolution Neural Network and YOLO9000,” in 2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering, IEEE, Oct. 2021, pp. 153–157. doi: 10.1109/QIR54354.2021.9716200.
S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi: 10.1109/TPAMI.2016.2577031.
J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jul. 2017, pp. 6517–6525. doi: 10.1109/CVPR.2017.690
Copyright (c) 2024 Manatap Dolok Lauro, Lina, Billy Marcelino, Lorico Salim (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright Notice
An author who publishes in the Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.

