Design of Ergonomic Biomass Stove Using Ergonomic Function Deployment (EFD) Method

Zayyinul Hayati Zen Industrial Engineering Department, Engineering Faculty of Universitas Muhammadiyah Riau Pekanbaru, Indonesia zayyinulhayati@umri.ac.id Ari Andriyas Puji Industrial Engineering Department, Engineering Faculty of Universitas Muhammadiyah Riau Pekanbaru, Indonesia andriyasari@umri.ac.id Eka Safitri Industrial Engineering Department, Engineering Faculty of Universitas Muhammadiyah Riau Pekanbaru, Indonesia ekaasaafitri207@gmail.com

Abstract— Increased energy use is caused by population growth and depletion of world oil reserves. Emissions from fossil fuels give problems to every country to immediately use alternative energy. Briquette is one of the methods used to convert biomass energy sources. Other biomasses such as coconut shells, wood charcoal, rice husks, and sawdust can be made into briquettes. Biomass stoves are stoves used specifically for the use of non-fossil fuels. The current problem is the design of biomass stoves used by respondents, one of which is biomass stove that is not ergonomic and difficult to control the size of the fire. So this research was conducted to design an ergonomic biomass stove using the Ergonomic Function deployment (EFD) method which is a development from Quality Function Deployment (OFD). The conclusion of the research design of an ergonomic biomass stove using the Ergonomic Function Deployment (EFD) method is a specification of the results of the design of a biomass stove needed, namely: a biomass stove that is safe, easy to use, a size that is comfortable to use, a lightweight and durable material, easy to set fire and easy to ignite. Then the anthropometric data used are the dimensions of the width of the palm of the hand measuring 8.62 cm, the dimension of the palm of the hand 4, cm.

Keywords—Alternative Fuels, Ergonomic Function Deployment, Biomass Stove

I. INTRODUCTION

At present the increase in energy use is caused by population growth and depletion of world oil reserves. Other problems such as emissions from fossil fuels make a nation immediately use alternative energy. Biomass is a biological resource that can be converted into renewable energy sources. Coverage of biomass energy comes from organic materials such as plants or animals, whether formed from the results of their production, metabolic waste, or derived from the waste they produce.

Based on the data from the Ministry of Energy's Statistics Indonesia, 2018 focuses on the use of

stoves or daily cooking activities. From these activities can be utilized by the conversion of energy into biomass. Biomass that can be used includes coconut shells, rice husks, sawdust, sawdust and other biomass waste. Making briquettes is not too difficult, the tools used are also not too complicated (Usman, 2014). Another problem arising from this energy conversion is related to the design of the stove that does not pay attention to ergonomic factors. Considered more efficient but enough complaints are found that will later be corrected to be superior products.

Popular research has been made by Rahman J. (2015) in his journal "Pollution-free Biomass Stove Design" is different from this research. One of the methods used is not in accordance with ergonomic aspects. Other research was also made by Sulistiyaningsih (2015) in her journal "Designing a Square Biomass Stove with Matlab Modeling and Matching Different Methods" variation with this study is wrong, the method used is not in accordance with ergonomics.

Regarding complaints felt by biomass stove users are: Experiencing low back pain, Causing a lot of smoke, Trying to cook a stove, Working out the size of the fire, Feeling the heat caused when using the stove. So that biomass fuels and biomass stoves can be used by the community using the Ergonomic Function (EFD) method.

II. RESEARCH METHOD

Ergonomic Function Deployment (EFD) is a development of Quality Function Deployment (QFD) (Ulrich & Eppinger, 1995) by adding a new relationship between consumer desires and the ergonomic aspects of the product. This relationship will complete the House of Quality matrix form which also translates into desired Ergonomic aspects. The House of Quality matrix used in the Ergonomic Function Deployment (EFD) was developed into the House of Ergonomic (HOE) matrix.

The first step of this method is the identification of needs variables by designing open questionnaires, determining samples and distributing questionnaires, ending with determining the needs variables. Then proceed with the identification of the level of importance in the form of designing open questionnaires, determining samples and distributing questionnaires, ending with a test of validity and reliability. The determination of the needs variable is based on the ENASE rule, which is (Effective, Comfortable, Safe, Healthy and Efficient). Then after the level of importance is obtained, it is continued with the formation of the House of Ergonomic which contains the needs and desires of consumers as a reference for the creation of new products according to consumer desires. The last stage is product design as an effort to meet the wants and needs of consumers. The flow of this research is arranged in the form of Flowchart as follows:

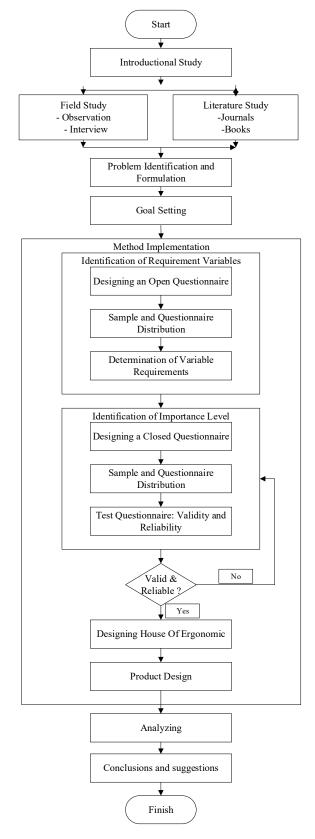


Figure I. Research Methodology Flowchart Source: Data processed in 2019

III. RESULTS AND DISCUSSION

A. Respondent Identification

TABLE I. Variable of consumers' needs

Aspect	Code	Variable of Needs	Description
Effective	V1	Easy to set fire	Biomass stove
		and easy to ignite	design can easily
			adjust the level of
			fire
	V2	Light and durable	The biomass stove
		material	material is
			lightweight,
			inexpensive, easy
			to carry and
			durable
	V3	Easy to use	The design of the
			biomass stove is
			easily understood
			by users
Comfortable	V4	The stove size is	The dimensions of
		comfortable to	the biomass stove
		use	are in accordance
			with Indonesian
			anthropometric
			body measurements
Safe	V5	Safe when used	The design of the
			biomass stove
			makes the user safe
			from accidents such
			as there is not much
			smoke, no pungent
			odor, and does not
			explode easily
Healthy	V6	Doesn't cause	Biomass stove
		back pain	design can reduce
		Ĩ	back pain
Efficient	V7	Economical in	A fuel-efficient
		usage	biomass stove is
		C	easily available

Source: Data Processing, 2019

B. Level of Consumer Interest

TABLE II. Level of Consumer Interest

No	Variable	STP	TP	СР	Р	SP	Total	Performance value
1	Easy to set fire and easy to ignite				4	6	46	4,6
2	Light and durable material				5	5	45	4,5
3	Easy to use				6	4	44	4,4
4	The stove size is comfortable to use				4	6	46	4,6
5	Safe when used				4	6	46	4,6
6	Doesn't cause back pain				6	4	44	4,4
7	Economical in usage				4	6	46	4,6
		Total					317	31,7

Source: Data Processing, 2019

C. Level of Consumer Satisfaction

TABLE III. Level of Consumer Satisfaction

No	Variable	S T P	T P	C P	Р	SP	Total	Performan ce value
1	Easy to set fire and easy to ignite		5	5			25	2,5
2	Light and durable material		6	4			24	2,4
3	Easy to use		6	4			24	2,4
4	The stove size is comfortable to use		5	5			25	2,5
5	Safe when used		5	5			25	2,5
6	Doesn't cause back pain		6	4			24	2,4
7	Economical in usage		5	5			25	2,5
	Total						172	17,2

Source: Data Processing, 2019

D. Goal

TABLE IV. Goal Setting

No	Variable	Goal
1	Easy to set fire and easy to ignite	5
2	Light and durable material	5
3	Easy to use	5
4	The stove size is comfortable to use	5
5	Safe when used	5
6	Doesn't cause back pain	5
7	Economical in usage	5

Source: Data Processing, 2019

E. Determine Technical Response

TA	TABLE V. Technical Response							
No	Variable	Technical Response						
1	Easy to set fire and easy to	Product Design						
	ignite							
2	Light and durable material	Material component						
3	Easy to use	Product Design						
4	The stove size is	Product dimension						
	comfortable to use							
5	Safe when used	Product Design						
6	Doesn't cause back pain	Product dimension						
7	Economical in usage	Material component						

Source: Data Processing, 2019

F. Uniformity Test, Data Sufficiency and Percentile value

TABLE VI. Recapitulation of Anthropometric Data Uniformity Test calculation

No	Dimension code	Body dimension	σ	BKA	BKB	Description
1	D12	Dimension of the width of the palm	0,52	8,61	6,59	Similar
2	D16	Dimension of the	0,26	4,27	3,23	Similar

thickness		
of the		
palm		

Source: Data Processing, 2019

TABLE VII. Recapitulation of Anthropometric Data Sufficiency Test calculation

DATA	N	N'	Description					
D12	10	6,4	Adequate					
D16 10 6,8 Adequate								
	4 D .	2010	•					

Source: Data Processing, 2019

TABLE VIII. Selected Percentile value

Ν	lo	Dimension	Body Dimension	Selected
		Code		Percentile
	1	D12	Dimension of the width of the palm	P 95 (8,62)
	2	D16	Dimension of the thickness of the palm	P 95 (4,26)

Source: Data Processing, 2019

Product dimensions are based on anthropometric measurements. The anthropometric data used were the width dimension of the palm (D12) of 8.62, and the dimension of palm thickness (D16) of 4.26.

G. House of Ergonomics

	\sim	\sim	~							
Technical Response Ergonomic User Needs	Importance to custumore	ComponenT of Material	Product Design	Product Dimention	Current Satisfaction Performance	Goal	Improrement Ratio	Sales Point	Row Weight	Normalized Row Weight
Easy to set fire and easy to ignite	4,6		0	0	2,5	5	2	1,5	13,80	0,14
Light and durable material	4,5	0	0		2,4	5	2,08	1,5	14,06	0,15
Easy to use	4,4		\odot	\circ	2,4	5	2,08	1,5	13,75	0,14
The stove size is comfortable to use	4,6		0	0	2,5	5	2	1,5	13,80	0,14
Safe when used	4,6	0	\odot	0	2,5	5	2	1,5	13,80	0,14
Doesn't cause back pain	4,4		0	\odot	2,4	5	2,08	1,5	13,75	0,14
Economical in usage	4,6	0	0	Δ	2,5	5	2	1,5	13,80	0,14
Target Spesification	The product material used to make pot holders, air fifters air inles, fuel inlets, trow frame poks, and combustion residues is made from galvanked iron plates, and for stove handles and stove fert using silicone rubber and polypropylete plastic	The design of a biomass stove product consists of a pun budter, an air fifter, an air the and a fuel inlet connected to a frame pole, a chamber tube, and a residual combustion chamber	The dimensions of the product consist of the width of the palm of the hand (D12) = 8.62 and the dimension of the palm of the hand (D16) = 4.26)))	If there relations If the re	hip be		two nal
Contribution	3,03	6,33	5,18		-					
Normalized Contribution	0,21	0,44	0,36							
Priority	3	1	2							

Figure II. House Of Ergonomic

Source: Data Processing 2019

HOE functions to unite all data into 1 picture that explains all EFD processing that forms a house image. HOE consists of consumer needs, technical responses, the relationship between customer needs and technical responses, the relationship between technical responses, the level of importance, level of satisfaction, Goal, Imitation Ratio, Sales Point, Raw Weight, Normalized Raw Weight, Target Specification, contribution value, normalized contribution and priority order.

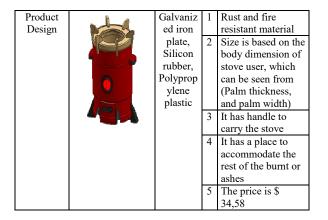
H. Design of Ergonomic Biomass Stove



Figure III. Design of Ergonomic Biomass Stove Source: Data Processing 2019

The design of the stove consists of filters, air holes, fuel inlet, frame poles, tubes and ash disposal sites connected and can use galvanized iron plate material, and there is a handle to hold or dispose of ash and add ash disposal in the design of biomass stoves which is resistant from fire.

Ι.	Material	Cost	Calculation


Material	Size Description	Size used	Per unit	Price	Price Per unit
Galvanized	75 x 75 x 2,7mm	150 x 85mm	9	\$ 35,66	\$ 2,80
iron plate		165 x 196mm	7		\$ 1,10
		110 x 20mm	8		\$ 16,21
		122 x 70mm	12		\$ 4,18
		150 x 50mm	20		\$ 4,76
		245 x244mm	12		\$ 3,96
Polypropylene plastic + silicon rubber	2 kg	3 x 30 x x100mm	9	\$ 14,21	\$ 15,79
Service			1	\$ 7,10	\$ 7,10
	Т	otal			\$ 34,58

Source: Data Processing, 2019

The manufacture of one biomass stove needs galvanized iron plate materials, with a total price of Rp.486,792,- per unit.

J. Benchmarking

Product Type	Product Design	Product Material	Product Specification	
Product on the market		Iron	1	Material can rust
			2	Size doesn't adjust to body dimension, which can be seen from (Palm thickness, and palm width)
			3	No handle
			4	No ash shelter
			5	The price is \$ 27,00

Figure IV. Benchmarking Source: Data Processing 2019

At this stage many differences are found in terms of the materials and components available on the biomass stove. In the proposed design, this biomass stove uses galvanized iron plate material because it has a material that is lightweight and resistant to fire, and so that users are more comfortable in using the stove, and can easily create a shelter or ash disposal after burning. In addition, silicone rubber has stable properties, non-reactive, and has the ability to survive in extreme environmental conditions and still be able to maintain its properties and functions.

IV. CONCLUSION

The conclusions of the research design of an ergonomic biomass stove using the Ergonomic Function Deployment (EFD) method are as follows:

- 1. The required biomass stove design specifications based on the results of the distribution of questionnaires to users or users of biomass stoves are stoves that have a lightweight and durable material, and the size of a stove that is comfortable when used, does not cause back pain, is easy to use, safe when used, and can set fire easily and easy to ignite.
- 2. From the data processing, an ergonomic biomass stove design with anthropometric data is obtained, namely the dimensions of the width of the palm of the hand measuring 8.62 cm, the dimension of the palm of the hand 4, cm.

ACKNOWLEDGMENT

We thank those who support and assist in the completion of this research. especially for our beloved campus, Muhammadiyah University of Riau and Industrial Engineering Department.

REFERENCES

- [1] Azwar, Saifudin. 1986. Validitas dan Reliabilitas. Jakarta: Rineka Cipta
- [2] Basuki, Sulistyo. 2010. Metode Penelitian. Jakarta : Penaku.
- [3] Dwi Puspitasari, 2015, Perancangan kompor sekam padi dengan menggunakan metode Kansei engineering
- [4] Feldt, L. S. & Brennan, R. L. 1989, Reliability. Dalam Robert L. Linn (Eds.), Educational Measurement (3rd, pp 105-143). New York: American Council on Education.
- [5] Hakim, Oktavianto. all 2017 Pencemaran udara dalam kompor biomassa, dan pengujian tingkat pencemaran udara kompor biomassaI. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350
- [6] Michael H. Walizer et.all, (1987), Metode dan Analisis Penelitian: Mencari Hubungan, Jilid 2, Erlangga, Jakarta.
- [7] Nurmianto., E, 1996, Ergonomi Konsep Dasar dan Aplikasinya, Edisi Pertama, Surabaya, Guna Widya.
- [8] Puspa, Alicia, 2013, "Perancangan Joyfun Highchair bagi anak usia balita dengan metode desain Partisipatif", Fakultas Teknik, Universitas Parahyangan
- [9] Riduwan. 2004. Metode dan Teknik Menyusun Tesis. Cetakan Pertama. Bandung : Alfabeta.
- [10] Singgih Santoso dan Tjiptono. 2001. Riset Pemasaran Konsep dan Aplikasi dengan SPSS. Elex Media Komputindo, Jakarta.
- [11] Sugiono, Dr., Prof., 2010, Metode Penelitian Kuantitatif Kualitatif Dan R&D, Alfabeta, Bandung.
- [12] Sugiyono Prof. Dr., 2012. Metode Penelitian Pendidikan Pendekatan Kuantitatif, kulaitatif dan R & D, Bandung : Cv. Alfa Beta,
- [13] Sugiyono. 2004. Metode Penelitian. Bandung: Alfabeta.
- [14] Sulistyo, Basuki, 2010, Metode Penelitian, Jakarta
- [15] Suryabrata, Sumadi, 2004, Psikologi Pendidikan, Jakarta : Raja Grafindo Persada
- [16] Tarwaka, Sholichul, Lilik Sudiajeng, 2004. Ergonomi Untuk Keselamatan, Kesehatan Kerja dan Produktivitas. Surakarta: UNIBA PRESS.
- [17] Ulrich, K. T. dan Steven D.E., 2001, Perancangan dan Pengembangan Produk, Salemba Teknika, Jakarta.
- [18] Sawir, 2016, pengembangan energy biomassa briket. Briket tempurung kelapa, serbuk gergaji, dan kayu bakar.