Studi Eksperimental Pengaruh Bilangan Reynold dan Fraksi Massa Terhadap Koefisien Perpindahan Panas Konveksi pada Pipa Coil

  • Firman Iskandarsyah, mr Universitas Andalas
  • Adek Tasri Universitas Andalas
  • Rahmadian Pratama Universitas Andalas
Keywords: koefesien perpindahan panas, perubahan fasa, kondisi aliran dua fasa, penukar kalor

Abstract

Aliran dua fase merupakan bagian dari aliran multi-fase dan  masih dapat dibedakan menjadi beberapa bagian yang memepengaruhi koefisien perpindahan panas. Pada dunia industri, koefisien perpindahan
panas memiliki arti penting. Dalam aplikasinya seperti pada proses pemanasan dan pendinginan, koefisien perpindahan panas sangat berpengaruh pada proses ini karena sangat menentukan hasil proses
yang di inginkan.. Perubahan fasa ini menciptakan kondisi aliran dua fasa dimana sebelumnya aliran tersebut hanya satu fasa. Kondisi aliran dua fasa ini tentu memiliki koefisien perpindahan panas yang
berbeda daripada aliran satu fasa. Sehingga kita perlu mengetahui besarnya pengaruh koefisien perpindahan panas pada aliran dua fasa. Penelitian ini  bertujuan untuk menentukan pengaruh fraksi massa terhadap koefisien perpindahan panas pada dinding coil.  

Downloads

Download data is not yet available.

References

[1] K. Hambraeus, “Heat Transfer Coefficient, Two-Phase Flow Boiling of HFC134a,” 1990.
[2] Mohamed El-Sayed Ali, “Natural Convection Heat Transfer from Vertical Helical Coils in Oil,” ResearchGate, vol. 27, 2006.
[3] D. Colorado-Garrido, “Numerical simulation for the heat transfer of a helical double-pipe vertical evaporator,” Proc. Eur. Congr. Chem. Eng. Copenhagen, no. September, pp. 16–20, 2007.
[4] D. Colorado-Garrido, “Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol / water solution,” Energy, vol. 36, 2011.
[5] H. N. Mohammed and A. Lecturer, “Experimental Study of Free Convection in Coiled Tube Heat Exchanger with Vertical Orientation,” Tikrit J. Eng. Sci., vol. 18, no. 4, 2011.
[6] M.A. Khairul, “International Journal of Heat and Mass Transfer Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids,” Int. J. Heat Mass Transf., vol. 67, pp. 398–403, 2013.
[7] X. Fang, “International Journal of Heat and Mass Transfer A new correlation of flow boiling heat transfer coefficients based on R134a data,” Int. J. Heat Mass Transf., vol. 66, pp. 279–283, 2013.
[8] N. Jamshidi, M. Farhadi, D. D. Ganji, and K. Sedighi, “Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 644–652, 2013.
[9] S. B, “International Journal of Heat and Mass Transfer Analysis of fouling factor in district heating heat exchangers with parallel helical tube coils,” Int. J. Heat Mass Transf., vol. 57, pp. 9–15, 2013.
[10] J. Fernández-seara, C. Piñeiro-pontevedra, and J. A. Dopazo, “On the performance of a vertical helical coil heat exchanger . Numerical model and experimental validation,” Appl. Therm. Eng., vol. 62, no.2, pp. 680–689, 2014.
[11] B. K. Hardik, P. K. Baburajan, and S. V Prabhu, “International Journal of Heat and Mass Transfer Local heat transfer coefficient in helical coils with single phase flow,” Int. J. Heat Mass Transf., vol. 89, pp. 22–538, 2015.
[12] B. Bezyan, S. Porkhial, and A. Aboui, “3- D simulation of heat transfer rate in geothermal pile-foundation heat exchangers with spiral pipe con fi guration,” Appl. Therm. Eng., vol. 87, pp. 655–668, 2015.
[13] S. Battu, “A Brief Review on Forced Convection Through Helical Coil Heat Exchangers,” Int. J. Innov. Res. Sci. Technol., vol. 2, no. 12, pp. 178–181,2016.
[14] X. Niu, S. Luo, L. Fan, and L. Zhao, “Numerical simulation on the flow and heat transfer characteristics in the one-side heating helically coiled tubes,” Appl. Therm. Eng., vol. 106, pp. 579–587, 2016.
[15] F. Bozzoli, L. Cattani, and S. Rainieri, “International Journal of Heat and Mass Transfer Effect of wall corrugation on local convective heat transfer in coiled tubes,” Int. J. Heat Mass Transf., vol. 101, pp. 76–90, 2016.
[16] H. Ito, Friction factors for turbulent flow in curved pipes, Trans. Am. Soc. Mech. Eng. D81 (1959) 123–134
[17] G.F.C. Rogers, Y.R. Mayhew, Heat transfer and pressure loss in helically coiled tubes with turbulent flow, Int. J. Heat Mass Transfer 7 (1964) 1207–1216
[18] A. Cioncolini, L. Santini, An experimental investigation regarding the laminar to turbulent flow transition in helically coiled pipes, Exp. Thermal Fluid Sci. 30 (2006) 367–380
[19] R. Gupta, R.K. Wanchoo, T.R.M.J. Ali, Laminar flow in helical coils: a parametric study, Ind. Eng. Chem. Res. 50 (2011) 1150–1157
[20] Choi. Kwang, Taek. Jong. Two-Phase Flow Boiling Heat Transfer of R-410A and R-134A in Horizontal Small Tubes. 2011
[21] Ilham. M. Penentuan Kombinasi Diameter Pipa, Diameter Koil Dan Laju Aliran Yang Menghasilkan Koefisien Perpindahan Panas Tertinggi Pada Penukar Panas Jenis Koil. 2016
[22] Hulwani. Zati. D. Efek Perubahan Bentuk Pipa Dari Pipa Lurus Menjadi Pipa Koil Terhadap Koefisien Perpindahan Panas Konveksi Dari Pipa Ke Lingkungan. 2016
How to Cite
Iskandarsyah, F., Tasri, A., & Pratama, R. (1). Studi Eksperimental Pengaruh Bilangan Reynold dan Fraksi Massa Terhadap Koefisien Perpindahan Panas Konveksi pada Pipa Coil. Jurnal Surya Teknika, 2(04), 43-48. https://doi.org/10.37859/jst.v2i04.207
Abstract views: 347 , pdf downloads: 1085