Perancangan Sistem Pakar Diagnosa Penyakit Lupus Eritmatosus Sistem(LES) Dengan Metode Forward Chaining Menggunakan Pemrograman PHP dan MySQL

  • novi yona sidratul munti Prodi Teknik Informatika,Fakultas Sains dan Teknologi, Universitas Pahlawan Tuanku Tambusai
Keywords: Sistem pakar, Lupus Eritmatosus Sistem (LES), Fordward Chaining, PHP MySQL

Abstract

The research objective is to design and build a web-based expert software engineering system that is able to diagnose Lupus Erythematosus System (LES) in humans to get solutions and information easily and quickly. The results shown are in the form of user conditions related to Lupus Eritmatosus System (LES). The results are also complemented with a description of the disease and treatment solutions that are displayed in the form of a website using PHP programming with a MySQL database. The conclusion of this research is that the PHP and MySQL programming languages ​​are proven to be able to be implemented in engineering expert systems to diagnose the Lupus Erythmatosus System (LES). The fordward chaining method is proven capable of tracing the symptoms of Lupus Erythmatosus System (LES) easily and quickly. The online system can help users get information about the types of diseases, symptoms and treatment solutions in the disease Lupus Erythmatosus System (LES) .

References

Ahmad Sanmorino. 2012. Clustering Batik Images using Fuzzy C-Means Algorithm Based on Log-Average Luminance. Faculty of Computer Science, Universitas Indonesia.
Amita Verma, Ashwani kumar. 2014. Performance Enhancement of K-Means Clustering Algorithms for High Dimensional Data sets. International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com
Angga Ginanjar Mabrur, Riani Lubis. 2012. Program Studi Teknik Informatika Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia.
Emerensye S. Y. Pandie. 2012. Implementasi Algoritma data mining K-Nearset Neighbor (K-NN) dalam pengambilan keputusan pengajuan kredit. Jurusan Ilmu Komputer, Fakultas Sains dan Teknik, Universitas Nusa Cendana
J Oyelade O , O Oladipupo O, C Obagbuwa I (2010), “Penerapan algoritma K-Means Clustering untuk prediksi kinerja akademik mahasiswa”
Noticewala Maitry dan Dinesh Vaghela. 2014. Survey on Different Density Based Algorithms on Spatial Dataset. International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at: www.ijarcsms.com
Nurhayati. 2014. Metode Rough Set untuk melihat perilaku suami yang menjadi akseptor KB vasetomi. Program StudiTeknik Informatika, STMIK Kaputama Binjai.
Ramesh Singh Yadava1, P.K.Mishra2. 2012. Performance Analysis of High Performance k-Mean Data Mining Algorithm for Multicore Heterogeneous Compute Cluster. International Journal of Information and Communication Technology Research ISSN 2223-4985
Sankar Rajagopal. 2011. Customer data Clustering using data mining technique. Enterprise DW/BI Consultant Tata Consultancy Services, Newark, DE, USA
Published
2019-08-11
Sidratul
Abstract views: 13
downloads: 17
s